English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Winds and eddy dynamics in the urban canopy layer over a city: A parameterization based on the mixing-layer analogy

MPS-Authors
/persons/resource/persons37111

Brasseur,  Guy P.       
Environmental Modelling, MPI for Meteorology, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Yao, L., Liu, C.-H., Brasseur, G. P., & Chao, C. Y. (2023). Winds and eddy dynamics in the urban canopy layer over a city: A parameterization based on the mixing-layer analogy. Building and Environment, 246: 110962. doi:10.1016/j.buildenv.2023.110962.


Cite as: https://hdl.handle.net/21.11116/0000-000D-F824-3
Abstract
Urban atmospheric flows are vital to the global ecology. This study characterizes urban canopy layer (UCL) dynamics and parameterizes the flows in the atmospheric surface layer (ASL) over heterogeneous urban surfaces. Large-eddy simulations (LESs) are used to transiently calculate the winds over a real, dense city. A linear function of eddy diffusivity of momentum KM is applied to the lower UCL. Analogous to its mixing-layer counterpart, the strong UCL top shear manifests an inflected mean wind speed profile which aligns well with the exponential law. The solutions to the mixing length lm and the turbulent momentum flux are analytically derived by consolidating the mixing-layer type shear and the form drag from the explicitly resolved roughness elements. The behavior of lm in the lower UCL, especially its peaked level, is captured well. Based on the balance between shear and form drag, an aerodynamic effective roof level Hae is designated where the ground effect is alleviated under shear dominance. Results reveal that a rougher urban surface generates eddies with a larger shear length scale, thus enhancing momentum transport. In-canopy turbulence mixing, which slows down wind decay, is also enhanced, resulting in stronger street-level breezes. The newly developed ASL flow model will be beneficial to urban planning by offering reliable predictions, effectuating the management of urban sustainability. © 2023 Elsevier Ltd