Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Recovering Marcus Theory Rates and Beyond without the Need for Decoherence Corrections: The Mapping Approach to Surface Hopping

MPG-Autoren
/persons/resource/persons295723

Mannouch,  J.
Hamburg Center for Ultrafast Imaging, Universität Hamburg;
Theory Group, Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;

Externe Ressourcen
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Ergänzendes Material (frei zugänglich)

jz3c03197_si_001.pdf
(Ergänzendes Material), 332KB

Zitation

Lawrence, J. E., Mannouch, J., & Richardson, a. J. O. (2024). Recovering Marcus Theory Rates and Beyond without the Need for Decoherence Corrections: The Mapping Approach to Surface Hopping. The Journal of Physical Chemistry Letters, 15(3), 707-716. doi:10.1021/acs.jpclett.3c03197.


Zitierlink: https://hdl.handle.net/21.11116/0000-000E-59F0-F
Zusammenfassung
It is well-known that fewest-switches surface hopping (FSSH) fails to correctly capture the quadratic scaling of rate constants with diabatic coupling in the weak-coupling limit, as expected from Fermi’s golden rule and Marcus theory. To address this deficiency, the most widely used approach is to introduce a “decoherence correction”, which removes the inconsistency between the wave function coefficients and the active state. Here we investigate the behavior of a new nonadiabatic trajectory method, called the mapping approach to surface hopping (MASH), on systems that exhibit an incoherent rate behavior. Unlike FSSH, MASH hops between active surfaces deterministically and can never have an inconsistency between the wave function coefficients and the active state. We show that MASH not only can describe rates for intermediate and strong diabatic coupling but also can accurately reproduce the results of Marcus theory in the golden-rule limit, without the need for a decoherence correction. MASH is therefore a significant improvement over FSSH in the simulation of nonadiabatic reactions.