English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Zyxin contributes to coupling between cell junctions and contractile actomyosin networks during apical constriction.

MPS-Authors
/cone/persons/resource/persons219548

Prakash,  Mangal
Max Planck Institute for Molecular Cell Biology and Genetics, Max Planck Society;

/cone/persons/resource/persons219280

Jug,  Florian
Max Planck Institute for Molecular Cell Biology and Genetics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Slabodnick, M. M., Tintori, S. C., Prakash, M., Zhang, P., Higgins, C. D., Chen, A. H., et al. (2023). Zyxin contributes to coupling between cell junctions and contractile actomyosin networks during apical constriction. PLoS genetics, 19(3): e1010319. doi:10.1371/journal.pgen.1010319.


Cite as: https://hdl.handle.net/21.11116/0000-000E-AB6E-7
Abstract
One of the most common cell shape changes driving morphogenesis in diverse animals is the constriction of the apical cell surface. Apical constriction depends on contraction of an actomyosin network in the apical cell cortex, but such actomyosin networks have been shown to undergo continual, conveyor belt-like contractions before the shrinking of an apical surface begins. This finding suggests that apical constriction is not necessarily triggered by the contraction of actomyosin networks, but rather can be triggered by unidentified, temporally-regulated mechanical links between actomyosin and junctions. Here, we used C. elegans gastrulation as a model to seek genes that contribute to such dynamic linkage. We found that α-catenin and β-catenin initially failed to move centripetally with contracting cortical actomyosin networks, suggesting that linkage is regulated between intact cadherin-catenin complexes and actomyosin. We used proteomic and transcriptomic approaches to identify new players, including the candidate linkers AFD-1/afadin and ZYX-1/zyxin, as contributing to C. elegans gastrulation. We found that ZYX-1/zyxin is among a family of LIM domain proteins that have transcripts that become enriched in multiple cells just before they undergo apical constriction. We developed a semi-automated image analysis tool and used it to find that ZYX-1/zyxin contributes to cell-cell junctions' centripetal movement in concert with contracting actomyosin networks. These results identify several new genes that contribute to C. elegans gastrulation, and they identify zyxin as a key protein important for actomyosin networks to effectively pull cell-cell junctions inward during apical constriction. The transcriptional upregulation of ZYX-1/zyxin in specific cells in C. elegans points to one way that developmental patterning spatiotemporally regulates cell biological mechanisms in vivo. Because zyxin and related proteins contribute to membrane-cytoskeleton linkage in other systems, we anticipate that its roles in regulating apical constriction in this manner may be conserved.