English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Network-neuron interactions underlying sensory responses of layer 5 pyramidal tract neurons in barrel cortex

MPS-Authors
/persons/resource/persons262159

Bast,  Arco       
Max Planck Research Group In Silico Brain Sciences, Max Planck Institute for Neurobiology of Behavior – caesar, Max Planck Society;
International Max Planck Research School (IMPRS) for Brain and Behavior, Max Planck Institute for Neurobiology of Behavior – caesar, Max Planck Society;

/persons/resource/persons284811

Fruengel,  Rieke       
Max Planck Research Group In Silico Brain Sciences, Max Planck Institute for Neurobiology of Behavior – caesar, Max Planck Society;
International Max Planck Research School (IMPRS) for Brain and Behavior, Max Planck Institute for Neurobiology of Behavior – caesar, Max Planck Society;

/persons/resource/persons84910

Oberlaender,  Marcel       
Max Planck Research Group In Silico Brain Sciences, Max Planck Institute for Neurobiology of Behavior – caesar, Max Planck Society;

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

journal.pcbi.1011468.pdf
(Any fulltext), 7MB

journal.pcbi.1011468.pdf
(Publisher version), 3MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Bast, A., Fruengel, R., De Kock, C., & Oberlaender, M. (2024). Network-neuron interactions underlying sensory responses of layer 5 pyramidal tract neurons in barrel cortex. PLOS Computational Biology, 20(4): e1011468. doi:10.1371/journal.pcbi.1011468.


Cite as: https://hdl.handle.net/21.11116/0000-000F-3243-D
Abstract
Neurons in the cerebral cortex receive thousands of synaptic inputs per second from thousands of presynaptic neurons. How the dendritic location of inputs, their timing, strength, and presynaptic origin, in conjunction with complex dendritic physiology, impact the transformation of synaptic input into action potential (AP) output remains generally unknown for in vivo conditions. Here, we introduce a computational approach to reveal which properties of the input causally underlie AP output, and how this neuronal input-output computation is influenced by the morphology and biophysical properties of the dendrites. We demonstrate that this approach allows dissecting of how different input populations drive in vivo observed APs. For this purpose, we focus on fast and broadly tuned responses that pyramidal tract neurons in layer 5 (L5PTs) of the rat barrel cortex elicit upon passive single whisker deflections. By reducing a multi-scale model that we reported previously, we show that three features are sufficient to predict with high accuracy the sensory responses and receptive fields of L5PTs under these specific in vivo conditions: the count of active excitatory versus inhibitory synapses preceding the response, their spatial distribution on the dendrites, and the AP history. Based on these three features, we derive an analytically tractable description of the input-output computation of L5PTs, which enabled us to dissect how synaptic input from thalamus and different cell types in barrel cortex contribute to these responses. We show that the input-output computation is preserved across L5PTs despite morphological and biophysical diversity of their dendrites. We found that trial-to-trial variability in L5PT responses, and cell-to-cell variability in their receptive fields, are sufficiently explained by variability in synaptic input from the network, whereas variability in biophysical and morphological properties have minor contributions. Our approach to derive analytically tractable models of input-output computations in L5PTs provides a roadmap to dissect network-neuron interactions underlying L5PT responses across different in vivo conditions and for other cell types.

Author summary
Revealing how synaptic inputs drive action potential output is one of the major challenges in neuroscience research. An increasing number of approaches therefore seek to combine detailed measurements at synaptic, cellular and network scales into biologically realistic brain models. Indeed, such models have started to make empirically testable predictions about the inputs that underlie in vivo observed activity patterns. However, the enormous complexity of these models generally prevents the derivation of interpretable descriptions that explain how neurons transform synaptic input into action potential output, and how these input-output computations depend on synaptic, cellular and network properties. Here we introduce an approach to reveal input-output computations that neurons in the cerebral cortex perform upon sensory stimulation. For this purpose, we reduce a realistic multi-scale model of the rat barrel cortex to the minimal description that accounts for in vivo observed responses to whisker stimuli. Thereby, we identify the input-output computation that these cortical neurons perform under this in vivo condition, and we show that this computation is preserved across neurons despite morphological and biophysical diversity. Our approach provides analytically tractable and hence interpretable descriptions of neuronal input-output computations during specific in vivo conditions.