English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Cancer drug sensitivity estimation using modular deep Graph Neural Networks

MPS-Authors
/persons/resource/persons73812

Lienhard,  Matthias       
Bioinformatics (Ralf Herwig), Dept. of Computational Molecular Biology (Head: Martin Vingron), Max Planck Institute for Molecular Genetics, Max Planck Society;

/persons/resource/persons244998

Thedinga,  Kristina
Bioinformatics (Ralf Herwig), Dept. of Computational Molecular Biology (Head: Martin Vingron), Max Planck Institute for Molecular Genetics, Max Planck Society;

/persons/resource/persons50202

Herwig,  Ralf       
Bioinformatics (Ralf Herwig), Dept. of Computational Molecular Biology (Head: Martin Vingron), Max Planck Institute for Molecular Genetics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

lqae043.pdf
(Publisher version), 2MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Campana, P. A., Prasse, P., Lienhard, M., Thedinga, K., Herwig, R., & Scheffer, T. (2024). Cancer drug sensitivity estimation using modular deep Graph Neural Networks. NAR: genomics and bioinformatics, 6(2): lqae043. doi:10.1093/nargab/lqae043.


Cite as: https://hdl.handle.net/21.11116/0000-000F-4FE2-A
Abstract
Computational drug sensitivity models have the potential to improve therapeutic outcomes by identifying targeted drugs components that are tailored to the transcriptomic profile of a given primary tumor. The SMILES representation of molecules that is used by state-of-the-art drug-sensitivity models is not conducive for neural networks to generalize to new drugs, in part because the distance between atoms does not generally correspond to the distance between their representation in the SMILES strings. Graph-attention networks, on the other hand, are high-capacity models that require large training-data volumes which are not available for drug-sensitivity estimation. We develop a modular drug-sensitivity graph-attentional neural network. The modular architecture allows us to separately pre-train the graph encoder and graph-attentional pooling layer on related tasks for which more data are available. We observe that this model outperforms reference models for the use cases of precision oncology and drug discovery; in particular, it is better able to predict the specific interaction between drug and cell line that is not explained by the general cytotoxicity of the drug and the overall survivability of the cell line. The complete source code is available at https://zenodo.org/doi/10.5281/zenodo.8020945. All experiments are based on the publicly available GDSC data.