Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Deep learning for historical Cadastral maps and satellite imagery analysis: insights from Styria's Franciscean Cadastre

MPG-Autoren
/persons/resource/persons300895

Göderle,  Wolfgang Thomas       
Department of Structural Changes of the Technosphere, Max Planck Institute of Geoanthropology, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

gea0284.pdf
(Verlagsversion), 6MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Göderle, W. T., Rampetsreiter, F., Macher, C., Mauthner, K., & Pimas, O. (2024). Deep learning for historical Cadastral maps and satellite imagery analysis: insights from Styria's Franciscean Cadastre. Digital humanities quarterly: DHQ, 18(3): 744.


Zitierlink: https://hdl.handle.net/21.11116/0000-000F-B4BD-1
Zusammenfassung
Cadastres from the 19th century are a complex as well as rich source for historians and archaeologists, the study of which presents great challenges. For archaeological and historical remote sensing, we have trained several Deep Learning models, CNNs, and Vision Transformers to extract large-scale data from this knowledge representation. We present the principle results of our work here and demonstrate our browser-based tool that allows researchers and public stakeholders to quickly identify spots that featured buildings in the 19th century Franciscean cadastre. The tool not only supports scholars and fellow researchers in building a better understanding of the settlement history of the region of Styria; it also helps public administration and fellow citizens to swiftly identify areas of heightened sensibility with regard to the cultural heritage of the region.