Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Rac1 Regulates Neuronal Polarization through the WAVE Complex

MPG-Autoren
/persons/resource/persons39093

Tahirovic,  S.
Max Planck Research Group: Axonal Growth and Regeneration / Bradke, MPI of Neurobiology, Max Planck Society;

/persons/resource/persons38885

Hellal,  F.
Max Planck Research Group: Axonal Growth and Regeneration / Bradke, MPI of Neurobiology, Max Planck Society;

/persons/resource/persons39008

Neukirchen,  D.
Max Planck Research Group: Axonal Growth and Regeneration / Bradke, MPI of Neurobiology, Max Planck Society;

/persons/resource/persons38846

Garvalov,  B. K.
Max Planck Research Group: Axonal Growth and Regeneration / Bradke, MPI of Neurobiology, Max Planck Society;

/persons/resource/persons38836

Flynn,  K. C.
Max Planck Research Group: Axonal Growth and Regeneration / Bradke, MPI of Neurobiology, Max Planck Society;

/persons/resource/persons38775

Bradke,  F.
Max Planck Research Group: Axonal Growth and Regeneration / Bradke, MPI of Neurobiology, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Tahirovic, S., Hellal, F., Neukirchen, D., Hindges, R., Garvalov, B. K., Flynn, K. C., et al. (2010). Rac1 Regulates Neuronal Polarization through the WAVE Complex. Journal of Neuroscience, 30(20), 6930-6943.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0012-1FB8-1
Zusammenfassung
Neuronal migration and axon growth, key events during neuronal development, require distinct changes in the cytoskeleton. Although many molecular regulators of polarity have been identified and characterized, relatively little is known about their physiological role in this process. To study the physiological function of Rac1 in neuronal development, we have generated a conditional knock-out mouse, in which Rac1 is ablated in the whole brain. Rac1-deficient cerebellar granule neurons, which do not express other Rac isoforms, showed impaired neuronal migration and axon formation both in vivo and in vitro. In addition, Rac1 ablation disrupts lamellipodia formation in growth cones. The analysis of Rac1 effectors revealed the absence of the Wiskott-Aldrich syndrome protein (WASP) family verprolin-homologous protein (WAVE) complex from the plasma membrane of knock-out growth cones. Loss of WAVE function inhibited axon growth, whereas overexpression of a membrane-tethered WAVE mutant partially rescued axon growth in Rac1-knock-out neurons. In addition, pharmacological inhibition of the WAVE complex effector Arp2/3 also reduced axon growth. We propose that Rac1 recruits the WAVE complex to the plasma membrane to enable actin remodeling necessary for axon growth.