Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Quasi-Interpolation by Quadratic Piecewise Polynomials in Three Variables

MPG-Autoren
/persons/resource/persons45303

Rössl,  Christian
Computer Graphics, MPI for Informatics, Max Planck Society;

/persons/resource/persons45792

Zeilfelder,  Frank
Computer Graphics, MPI for Informatics, Max Planck Society;

/persons/resource/persons45449

Seidel,  Hans-Peter       
Computer Graphics, MPI for Informatics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Nürnberger, G., Rössl, C., Zeilfelder, F., & Seidel, H.-P. (2005). Quasi-Interpolation by Quadratic Piecewise Polynomials in Three Variables. Computer Aided Geometric Design, 22(3), 221-249. doi:10.1016/j.cagd.2004.11.002.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-000F-2778-6
Zusammenfassung
A quasi-interpolation method for quadratic piecewise polynomials in three
variables is described which can be used for the efficient reconstruction and
visualization of gridded volume data. We analyze the smoothness
properties of the trivariate splines. We prove that the splines yield nearly
optimal approximation order while simultaneously its piecewise derivatives
provide optimal approximation of the derivatives of smooth functions.
The constants of the corresponding error bounds are given explicitly.
Numerical tests confirm the results and the efficiency
of the method.