Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Microlocal spectrum condition and Hadamard form for vector-valued quantum fields in curved spacetime

MPG-Autoren

Sahlmann,  Hanno
Quantum Gravity & Unified Theories, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

2701.pdf
(Preprint), 463KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Sahlmann, H., & Verch, R. (2001). Microlocal spectrum condition and Hadamard form for vector-valued quantum fields in curved spacetime. Reviews in Mathematical Physics, 13, 1203-1246.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0013-5653-F
Zusammenfassung
The characterization of Hadamard states in terms of a specific form of the wavefront set of their two-point functions has been developed some years ago by Radzikowski for scalar fields on a four-dimensional globally hyperbolic spacetime, and initiated a major progress in the understanding of Hadamard states and the further development of quantum field theory in curved spacetime. In the present work, the characterization of Hadamard states through a particular form of the wavefront set of their two-point functions will be generalized from scalar fields to vector fields (sections in a vector bundle) which are subject to a wave-equation and are quantized so as to fulfill the covariant canonical commutation relations, or which obey a Dirac equation and are quantized according to the covariant anti-commutation relations, in any globally hyperbolic spacetime having dimension three or higher. In proving this result, a gap which is present in the published proof for the scalar field case will be removed. Moreover we determine the short-distance scaling limits of Hadamard states for vector-bundle valued fields, finding them to coincide with the corresponding flat-space, massless vacuum states.