Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Hochschulschrift

From Final Dark Matter Results and Background Shape Uncertainties in XENON100 to First Light in XENON1T

MPG-Autoren
/persons/resource/persons37635

Rauch,  Franz Ludwig
Division Prof. Dr. Manfred Lindner, MPI for Nuclear Physics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

PHDthesis_rauch.pdf
(beliebiger Volltext), 9MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Rauch, F. L. (2017). From Final Dark Matter Results and Background Shape Uncertainties in XENON100 to First Light in XENON1T. PhD Thesis, Ruprecht-Kalrs-Universität, Heidelberg.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-002D-A37D-C
Zusammenfassung
The quest to directly detect dark matter, in particular weakly interactive massive particles (WIMP), lead to a development of a plethora of detector technologies. Since 2007 dual-phase time-projection chambers exploiting liquid xenon performed superior to all other technologies at WIMP masses above a few GeV/c2. Among them, the XENON100 experiment shows the longest measurement with a combined live time of 477 days. An analysis to probe spin independent and spin dependent WIMP interactions is presented in this thesis, setting an upper limit on the WIMP-nucleon spin independent cross section at 1:1 x 10-45 cm2 for a 50 GeV/ c2 WIMP mass. Furthermore, potential improvements are identified in the conventional XENON100 analysis and the outlined solution allows to consider shape uncertainties of non-parametric probability density functions by means of a profile likelihood analysis. The applicability of the method is shown by constraining the WIMP model in an astrophysical independent approach with XENON100 data. Finally, performance tests of the Hamamatsu R11410-21 3" photomultiplier tubes (PMT) are presented which are employed in the next generation experiment XENON1T. First results from the commissioning of the XENON1T detector with respect to the PMT performance are shown with a special focus on the impact of light emitting tubes.