Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Impact of a stochastic nonorographic gravity wave parameterization on the stratospheric dynamics of a general circulation model

MPG-Autoren
/persons/resource/persons37254

Manzini,  Elisa       
Minerva Research Group Stratosphere and Climate, The Atmosphere in the Earth System, MPI for Meteorology, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

JAMES-2018-Serva-et-al.pdf
(Verlagsversion), 3MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Serva, F., Cagnazzo, C., Riccio, A., & Manzini, E. (2018). Impact of a stochastic nonorographic gravity wave parameterization on the stratospheric dynamics of a general circulation model. Journal of Advances in Modeling Earth Systems, 10, 2147-2162. doi:10.1029/2018MS001297.


Zitierlink: https://hdl.handle.net/21.11116/0000-0002-18AE-0
Zusammenfassung
The general circulation of the middle atmosphere, particularly of the mesosphere, is strongly dependent on the forcing arising from gravity wave processes. Their sources in the troposphere are both orographic and nonorographic, the latter being strongly intermittent. In climate models, the effects of gravity waves need to be parameterized, often assuming that their properties are constant. In this work we focus on the changes of the middle atmosphere due to the introduction of intermittency in a parameterization of nonorographic gravity waves, using a stochastic version of the Hines scheme. The stochastic approach is tailored to the diagnosed sensitivity of the model to this forcing, and peculiar changes emerge even if a relatively small amount of intermittency is prescribed. We analyze in detail the changes of the stratospheric dynamics in the tropical region and the global circulation of the middle atmosphere, when the stochastic parameterization is employed in place of the deterministic one. The mean state and variability of the model, realistic also in the default version, are preserved when stochasticity is added. Significant changes are observed in the mesosphere due to an enhanced poleward transport, leading to warming in the winter season. While there are some improvements of the mean state, the interannual variability is not significantly affected in the extratropics. The impacts on the simulated equatorial stratosphere are evident, as the stochasticity reduces the overall period of the quasi-biennial oscillation but also leads to a net reduction of the variability between cycles. ©2018. The Authors.