English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Combining Promiscuous Acyl-CoA Oxidase and Enoyl-CoA Carboxylase/Reductases for Atypical Polyketide Extender Unit Biosynthesis

MPS-Authors
/persons/resource/persons254801

Vögeli,  Bastian
Understanding and Building Metabolism, Department of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Max Planck Society;

/persons/resource/persons263559

Geyer,  Kyra
Understanding and Building Metabolism, Department of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Max Planck Society;

/persons/resource/persons254291

Gerlinger,  Patrick
Understanding and Building Metabolism, Department of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Max Planck Society;

/persons/resource/persons254132

Benkstein,  Sarah
Understanding and Building Metabolism, Department of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Max Planck Society;

/persons/resource/persons254199

Cortina,  Nina Socorro
Core Facility Metabolomics and small Molecules Mass Spectrometry, Max Planck Institute for Terrestrial Microbiology, Max Planck Society;
Understanding and Building Metabolism, Department of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Max Planck Society;

/persons/resource/persons254247

Erb,  Tobias J.
Understanding and Building Metabolism, Department of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Vögeli, B., Geyer, K., Gerlinger, P., Benkstein, S., Cortina, N. S., & Erb, T. J. (2018). Combining Promiscuous Acyl-CoA Oxidase and Enoyl-CoA Carboxylase/Reductases for Atypical Polyketide Extender Unit Biosynthesis. CELL CHEMICAL BIOLOGY, 25(7), 833. doi:10.1016/j.chembiol.2018.04.009.


Cite as: https://hdl.handle.net/21.11116/0000-0004-4616-5
Abstract
The incorporation of different extender units generates structural diversity in polyketides. There is significant interest in engineering substrate specificity of polyketide synthases (PKSs) to change their chemical structure. Efforts to change extender unit selectivity are hindered by the lack of simple screening methods and easily available atypical extender units. Here, we present a chemo-biosynthetic strategy that employs biocatalytic proofreading and allows access to a large variety of extender units. First, saturated acids are chemically coupled to free coenzyme A (CoA). The corresponding acyl-CoAs are then converted to alkylmalonyl-CoAs in a "one-pot" reaction through the combined action of an acyl-CoA oxidase and enoyl-CoA carboxylase/reductase. We synthesized six different extender units and used them in in vitro competition screens to investigate active site residues conferring extender unit selectivity. Our results show the importance of an uncharacterized glutamine in extender unit selectivity and open the possibility for comprehensive studies on extender incorporation in PKSs.