Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Higher structures, quantum groups, and genus zero modular operad

MPG-Autoren
/persons/resource/persons235752

Manin,  Yuri I.
Max Planck Institute for Mathematics, Max Planck Society;

Externe Ressourcen
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

arXiv:1802.04072.pdf
(Preprint), 124KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Manin, Y. I. (2019). Higher structures, quantum groups, and genus zero modular operad. Journal of the London Mathematical Society, 100(3), 721-730. doi:10.1112/jlms.12217.


Zitierlink: https://hdl.handle.net/21.11116/0000-0005-5BFE-8
Zusammenfassung
In my Montreal lecture notes of 1988, it was suggested that the theory of linear quantum groups can be presented in the framework of the category of quadratic algebras (imagined as algebras of functions on "quantum linear spaces"), and quadratic algebras of their inner (co)homomorphisms.
Soon it was understood (E. Getzler and
J. Jones, V. Ginzburg, M. Kapranov,
M. Kontsevich, M. Markl, B. Vallette et al.) that the class of quadratic operads can be introduced and the main theorems about quadratic algebras can be generalised to the level of such operads, if their components are linear spaces (or objects of more general monoidal categories.)
When quantum cohomology entered the scene, it turned out that the basic tree level (genus zero) (co)operad of quantum cohomology not only is quadratic one, but its components are themselves quadratic algebras.
In this short note, I am studying the interaction of quadratic algebras structure with operadic structure in the context of enriched category formalism due to G. M. Kelly et al.