Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Corticomuscular interactions during different movement periods in a multi-joint compound movement

MPG-Autoren
/persons/resource/persons222546

Kenville,  Rouven
Institute of General Kinesiology and Athletics Training, Faculty of Sport Science, University of Leipzig, Germany;
Department Neurology, MPI for Human Cognitive and Brain Sciences, Max Planck Society;

/persons/resource/persons222543

Maudrich,  Tom
Institute of General Kinesiology and Athletics Training, Faculty of Sport Science, University of Leipzig, Germany;
Department Neurology, MPI for Human Cognitive and Brain Sciences, Max Planck Society;

/persons/resource/persons223651

Maudrich,  Dennis
Department Neurology, MPI for Human Cognitive and Brain Sciences, Max Planck Society;

/persons/resource/persons20065

Villringer,  Arno
Department Neurology, MPI for Human Cognitive and Brain Sciences, Max Planck Society;
MindBrainBody Institute, Berlin School of Mind and Brain, Humboldt University Berlin, Germany;
Clinic for Cognitive Neurology, University of Leipzig, Germany;

/persons/resource/persons201758

Nikulin,  Vadim V.
Department Neurology, MPI for Human Cognitive and Brain Sciences, Max Planck Society;
Centre for Cognition and Decision Making, National Research University Higher School of Economics, Moscow, Russia;
Neurophysics Group, Department of Neurology, Charité University Medicine Berlin, Germany;

/persons/resource/persons19935

Ragert,  Patrick
Institute of General Kinesiology and Athletics Training, Faculty of Sport Science, University of Leipzig, Germany;
Department Neurology, MPI for Human Cognitive and Brain Sciences, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

Kenville_Maudrich_2020.pdf
(Verlagsversion), 3MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Kenville, R., Maudrich, T., Vidaurre, C., Maudrich, D., Villringer, A., Nikulin, V. V., et al. (2020). Corticomuscular interactions during different movement periods in a multi-joint compound movement. Scientific Reports, 10: 5021. doi:10.1038/s41598-020-61909-z.


Zitierlink: https://hdl.handle.net/21.11116/0000-0006-BEC5-6
Zusammenfassung
While much is known about motor control during simple movements, corticomuscular communication profiles during compound movement control remain largely unexplored. Here, we aimed at examining frequency band related interactions between brain and muscles during different movement periods of a bipedal squat (BpS) task utilizing regression corticomuscular coherence (rCMC), as well as partial directed coherence (PDC) analyses. Participants performed 40 squats, divided into three successive movement periods (Eccentric (ECC), Isometric (ISO) and Concentric (CON)) in a standardized manner. EEG was recorded from 32 channels specifically-tailored to cover bilateral sensorimotor areas while bilateral EMG was recorded from four main muscles of BpS. We found both significant CMC and PDC (in beta and gamma bands) during BpS execution, where CMC was significantly elevated during ECC and CON when compared to ISO. Further, the dominant direction of information flow (DIF) was most prominent in EEG-EMG direction for CON and EMG-EEG direction for ECC. Collectively, we provide novel evidence that motor control during BpS is potentially achieved through central motor commands driven by a combination of directed inputs spanning across multiple frequency bands. These results serve as an important step toward a better understanding of brain-muscle relationships during multi joint compound movements.