Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Training deep neural density estimators to identify mechanistic models of neural dynamics

MPG-Autoren
/persons/resource/persons258819

Gonçalves,  Pedro J.       
Max Planck Research Group Neural Systems Analysis, Center of Advanced European Studies and Research (caesar), Max Planck Society;
External Organizations;

/persons/resource/persons192805

Lueckmann,  J-M
Max Planck Research Group Neural Systems Analysis, Center of Advanced European Studies and Research (caesar), Max Planck Society;
External Organizations;

/persons/resource/persons192652

Nonnenmacher,  Marcel
Max Planck Research Group Neural Systems Analysis, Center of Advanced European Studies and Research (caesar), Max Planck Society;
External Organizations;

/persons/resource/persons192667

Bassetto,  Giacomo
Max Planck Research Group Neural Systems Analysis, Center of Advanced European Studies and Research (caesar), Max Planck Society;
External Organizations;

/persons/resource/persons84066

Macke,  Jakob H
Max Planck Research Group Neural Systems Analysis, Center of Advanced European Studies and Research (caesar), Max Planck Society;
External Organizations;

Externe Ressourcen
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

elife-56261-v3.pdf
(Verlagsversion), 17MB

elife-56261-v2.pdf
(Preprint), 18MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Gonçalves, P. J., Lueckmann, J.-M., Deistler, M., Nonnenmacher, M., Öcal, K., Bassetto, G., et al. (2020). Training deep neural density estimators to identify mechanistic models of neural dynamics. eLife, 9(1): e56261. doi:10.7554/eLife.56261.


Zitierlink: https://hdl.handle.net/21.11116/0000-0007-6401-7
Zusammenfassung
Mechanistic modeling in neuroscience aims to explain observed phenomena in terms of underlying causes. However, determining which model parameters agree with complex and stochastic neural data presents a significant challenge. We address this challenge with a machine learning tool which uses deep neural density estimators—trained using model simulations—to carry out Bayesian inference and retrieve the full space of parameters compatible with raw data or selected data features. Our method is scalable in parameters and data features and can rapidly analyze new data after initial training. We demonstrate the power and flexibility of our approach on receptive fields, ion channels, and Hodgkin–Huxley models. We also characterize the space of circuit configurations giving rise to rhythmic activity in the crustacean stomatogastric ganglion, and use these results to derive hypotheses for underlying compensation mechanisms. Our approach will help close the gap between data-driven and theory-driven models of neural dynamics.