日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

Identification of the Mott Insulating Charge Density Wave State in 1T−TaS2

MPS-Authors
/persons/resource/persons252093

Shin,  D.
Theory Group, Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;
Center for Free-Electron Laser Science;

/persons/resource/persons194586

Tancogne-Dejean,  N.
Theory Group, Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;
Center for Free-Electron Laser Science;

/persons/resource/persons250865

Zhang,  J.
Theory Group, Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;
Center for Free-Electron Laser Science;

/persons/resource/persons22028

Rubio,  A.
Theory Group, Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;
Center for Free-Electron Laser Science;
Nano-Bio Spectroscopy Group, Departamento de Fisica de Materiales, Universidad del Pas Vasco;
Center for Computational Quantum Physics (CCQ), The Flatiron Institute;

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)

PhysRevLett.126.196406.pdf
(出版社版), 2MB

付随資料 (公開)

TaS2_SM.pdf
(付録資料), 5MB

引用

Shin, D., Tancogne-Dejean, N., Zhang, J., Okyay, M. S., Rubio, A., & Park, N. (2021). Identification of the Mott Insulating Charge Density Wave State in 1T−TaS2. Physical Review Letters, 126(19):. doi:10.1103/PhysRevLett.126.196406.


引用: https://hdl.handle.net/21.11116/0000-0008-5233-2
要旨
We investigate the low-temperature charge density wave (CDW) state of bulk TaS2 with a fully self-consistent density-functional theory with the Hubbard U potential, over which the controversy has remained unresolved regarding the out-of-plane metallic band. By examining the innate structure of the Hubbard U potential, we reveal that the conventional use of atomic-orbital basis could seriously misevaluate the electron correlation in the CDW state. By adopting a generalized basis, covering the whole David star, we successfully reproduce the Mott insulating nature with the layer-by-layer antiferromagnetic order. Similar consideration should be applied for description of the electron correlation in molecular solid.