Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Underground isoleucine biosynthesis pathways in E. coli

MPG-Autoren
/persons/resource/persons254137

Bernhardsgrütter,  Iria
Understanding and Building Metabolism, Department of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Max Planck Society;

/persons/resource/persons254179

Burgener,  Simon
Understanding and Building Metabolism, Department of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Max Planck Society;

/persons/resource/persons254700

Schulz,  Luca
Understanding and Building Metabolism, Department of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Max Planck Society;

/persons/resource/persons261240

Paczia,  Nicole       
Core Facility Metabolomics and small Molecules Mass Spectrometry, Max Planck Institute for Terrestrial Microbiology, Max Planck Society;

/persons/resource/persons254247

Erb,  Tobias J.
Understanding and Building Metabolism, Department of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Cotton, C. A. R., Bernhardsgrütter, I., He, H., Burgener, S., Schulz, L., Paczia, N., et al. (2020). Underground isoleucine biosynthesis pathways in E. coli. ELIFE, 9: e54207. doi:10.7554/eLife.54207.


Zitierlink: https://hdl.handle.net/21.11116/0000-0008-BE5A-E
Zusammenfassung
The promiscuous activities of enzymes provide fertile ground for the
evolution of new metabolic pathways. Here, we systematically explore the
ability of E. coli to harness underground metabolism to compensate for
the deletion of an essential biosynthetic pathway. By deleting all
threonine deaminases, we generated a strain in which isoleucine
biosynthesis was interrupted at the level of 2-ketobutyrate. Incubation
of this strain under aerobic conditions resulted in the emergence of a
novel 2-ketobutyrate biosynthesis pathway based upon the promiscuous
cleavage of O-succinyl-L-homoserine by cystathionine gamma-synthase
(MetB). Under anaerobic conditions, pyruvate formate-lyase enabled
2-ketobutyrate biosynthesis from propionyl-CoA and formate.
Surprisingly, we found this anaerobic route to provide a substantial
fraction of isoleucine in a wildtype strain when propionate is available
in the medium. This study demonstrates the selective advantage
underground metabolism offers, providing metabolic redundancy and
flexibility which allow for the best use of environmental carbon
sources.