English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

The impact of phase entrainment on auditory detection is highly variable: Revisiting a key finding (Early View)

MPS-Authors
/persons/resource/persons227246

Sun,  Yue
Department of Neuroscience, Max Planck Institute for Empirical Aesthetics, Max Planck Society;

/persons/resource/persons141631

Michalareas,  Giorgos
Department of Neuroscience, Max Planck Institute for Empirical Aesthetics, Max Planck Society;

/persons/resource/persons173724

Poeppel,  David
Department of Neuroscience, Max Planck Institute for Empirical Aesthetics, Max Planck Society;
Department of Psychology, New York University;
Max Planck-NYU Center for Language, Music, and Emotion (CLaME);
Ernst Strüngmann Institute for Neuroscience;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

neu-21-sun-01-impact.pdf
(Publisher version), 3MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Sun, Y., Michalareas, G., & Poeppel, D. (2021). The impact of phase entrainment on auditory detection is highly variable: Revisiting a key finding (Early View). European Journal of Neuroscience: European Neuroscience Association. doi:10.1111/ejn.15367.


Cite as: https://hdl.handle.net/21.11116/0000-0009-010A-B
Abstract
Ample evidence shows that the human brain carefully tracks acoustic temporal regularities in the input, perhaps by entraining cortical neural oscillations to the rate of the stimulation. To what extent the entrained oscillatory activity influences processing of upcoming auditory events remains debated. Here, we revisit a critical finding from Hickok et al. (2015) that demonstrated a clear impact of auditory entrainment on subsequent auditory detection. Participants were asked to detect tones embedded in stationary noise, following a noise that was amplitude modulated at 3 Hz. Tonal targets occurred at various phases relative to the preceding noise modulation. The original study (N = 5) showed that the detectability of the tones (presented at near-threshold intensity) fluctuated cyclically at the same rate as the preceding noise modulation. We conducted an exact replication of the original paradigm (N = 23) and a conceptual replication using a shorter experimental procedure (N = 24). Neither experiment revealed significant entrainment effects at the group level. A restricted analysis on the subset of participants (36%) who did show the entrainment effect revealed no consistent phase alignment between detection facilitation and the preceding rhythmic modulation. Interestingly, both experiments showed group-wide presence of a non-cyclic behavioural pattern, wherein participants' detection of the tonal targets was lower at early and late time points of the target period. The two experiments highlight both the sensitivity of the task to elicit oscillatory entrainment and the striking individual variability in performance.