Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Pattern formation mechanisms of self-organizing reaction-diffusion systems

MPG-Autoren
/persons/resource/persons271296

Landge,  A
Müller Group, Friedrich Miescher Laboratory, Max Planck Society;

/persons/resource/persons206891

Müller,  P
Müller Group, Friedrich Miescher Laboratory, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Landge, A., Jordan, B., Diego, X., & Müller, P. (2020). Pattern formation mechanisms of self-organizing reaction-diffusion systems. Developmental Biology, 460(1), 2-11. doi:10.1016/j.ydbio.2019.10.031.


Zitierlink: https://hdl.handle.net/21.11116/0000-000A-319C-F
Zusammenfassung
Embryonic development is a largely self-organizing process, in which the adult body plan arises from a ball of cells with initially nearly equal potency. The reaction-diffusion theory first proposed by Alan Turing states that the initial symmetry in embryos can be broken by the interplay between two diffusible molecules, whose interactions lead to the formation of patterns. The reaction-diffusion theory provides a valuable framework for self-organized pattern formation, but it has been difficult to relate simple two-component models to real biological systems with multiple interacting molecular species. Recent studies have addressed this shortcoming and extended the reaction-diffusion theory to realistic multi-component networks. These efforts have challenged the generality of previous central tenets derived from the analysis of simplified systems and guide the way to a new understanding of self-organizing processes. Here, we discuss the challenges in modeling multi-component reaction-diffusion systems and how these have recently been addressed. We present a synthesis of new pattern formation mechanisms derived from these analyses, and we highlight the significance of reaction-diffusion principles for developmental and synthetic pattern formation.