Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Controlled Doping of Electrocatalysts through Engineering Impurities

MPG-Autoren
/persons/resource/persons243126

Kim,  Se-Ho
Atom Probe Tomography, Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;
Hydrogen in Energy Materials, Project Groups, Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

/persons/resource/persons221389

Yoo,  Su-Hyun
Computational Materials Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

/persons/resource/persons256285

El-Zoka,  Ayman
Atom Probe Tomography, Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;
Hydrogen in Energy Materials, Project Groups, Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

/persons/resource/persons188367

Kasian,  Olga
Electrocatalysis, Interface Chemistry and Surface Engineering, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;
Helmholtz Zentrum Berlin, Helmholtz-Institute Erlangen-Nürnberg, 14109 Berlin, Germany;

/persons/resource/persons225581

Lim,  Joohyun
Nanoanalytics and Interfaces, Independent Max Planck Research Groups, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;
Department of Chemistry, Kangwon National University 24341 Chuncheon, Republic of Korea;

/persons/resource/persons243150

Jeong,  Jiwon
Nanoanalytics and Interfaces, Independent Max Planck Research Groups, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

/persons/resource/persons76047

Scheu,  Christina
Nanoanalytics and Interfaces, Independent Max Planck Research Groups, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

/persons/resource/persons125293

Neugebauer,  Joerg
Computational Materials Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

/persons/resource/persons125433

Todorova,  Mira
Electrochemistry and Corrosion, Computational Materials Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

/persons/resource/persons185411

Gault,  Baptiste
Atom Probe Tomography, Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;
Hydrogen in Energy Materials, Project Groups, Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Kim, S.-H., Yoo, S.-H., Shin, S., El-Zoka, A., Kasian, O., Lim, J., et al. (2022). Controlled Doping of Electrocatalysts through Engineering Impurities. Advanced Materials, 2203030. doi:10.1002/adma.202203030.


Zitierlink: https://hdl.handle.net/21.11116/0000-000A-A35B-8
Zusammenfassung
Fuel cells recombine water from H-2 and O-2 thereby can power, for example, cars or houses with no direct carbon emission. In anion-exchange membrane fuel cells (AEMFCs), to reach high power densities, operating at high pH is an alternative to using large volumes of noble metals catalysts at the cathode, where the oxygen-reduction reaction occurs. However, the sluggish kinetics of the hydrogen-oxidation reaction (HOR) hinders upscaling despite promising catalysts. Here, the authors observe an unexpected ingress of B into Pd nanocatalysts synthesized by wet-chemistry, gaining control over this B-doping, and report on its influence on the HOR activity in alkaline conditions. They rationalize their findings using ab initio calculations of both H- and OH-adsorption on B-doped Pd. Using this "impurity engineering" approach, they thus design Pt-free catalysts as required in electrochemical energy conversion devices, for example, next generations of AEMFCs, that satisfy the economic and environmental constraints, that is, reasonable operating costs and long-term stability, to enable the "hydrogen economy."