Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

ResMiCo: increasing the quality of metagenome-assembled genomes with deep learning

MPG-Autoren
/persons/resource/persons270516

Ley,  RE       
Department Microbiome Science, Max Planck Institute for Biology Tübingen, Max Planck Society;

/persons/resource/persons270526

Youngblut,  ND       
Department Microbiome Science, Max Planck Institute for Biology Tübingen, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Mineeva, O., Danciu, D., Schölkopf, B., Ley, R., Rätsch, G., & Youngblut, N. (2023). ResMiCo: increasing the quality of metagenome-assembled genomes with deep learning. PLoS Computational Biology, 19(5): e1011001. doi:10.1371/journal.pcbi.1011001.


Zitierlink: https://hdl.handle.net/21.11116/0000-000A-B7C0-E
Zusammenfassung
The number of published metagenome assemblies is rapidly growing due to advances in sequencing technologies. However, sequencing errors, variable coverage, repetitive genomic regions, and other factors can produce misassemblies, which are challenging to detect for taxonomically novel genomic data. Assembly errors can affect all downstream analyses of the assemblies. Accuracy for the state of the art in reference-free misassembly prediction does not exceed an AUPRC of 0.57, and it is not clear how well these models generalize to real-world data. Here, we present the Residual neural network for Misassembled Contig identification (ResMiCo), a deep learning approach for reference-free identification of misassembled contigs. To develop ResMiCo, we first generated a training dataset of unprecedented size and complexity that can be used for further benchmarking and developments in the field. Through rigorous validation, we show that ResMiCo is substantially more accurate than the state of the art, and the model is robust to novel taxonomic diversity and varying assembly methods. ResMiCo estimated 7% misassembled contigs per metagenome across multiple real-world datasets. We demonstrate how ResMiCo can be used to optimize metagenome assembly hyperparameters to improve accuracy, instead of optimizing solely for contiguity. The accuracy, robustness, and ease-of-use of ResMiCo make the tool suitable for general quality control of metagenome assemblies and assembly methodology optimization.