Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Universal K-matrices for quantum Kac-Moody algebras

MPG-Autoren
/persons/resource/persons277013

Vlaar,  Bart
Max Planck Institute for Mathematics, Max Planck Society;

Externe Ressourcen
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Appel, A., & Vlaar, B. (2022). Universal K-matrices for quantum Kac-Moody algebras. Representation Theory, 26, 764-824. doi:10.1090/ert/623.


Zitierlink: https://hdl.handle.net/21.11116/0000-000A-DB9F-D
Zusammenfassung
We introduce the notion of a cylindrical bialgebra, which is a
quasitriangular bialgebra H endowed with a universal K-matrix, i.e., a
universal solution of a generalized reflection equation, yielding an action of
cylindrical braid groups on tensor products of its representations. We prove
that new examples of such universal K-matrices arise from quantum symmetric
pairs of Kac-Moody type and depend upon the choice of a pair of generalized
Satake diagrams. In finite type, this yields a refinement of a result obtained
by Balagovi\'c and Kolb, producing a family of non-equivalent solutions
interpolating between the quasi-K-matrix and the full universal K-matrix.
Finally, we prove that this construction yields formal solutions of the
generalized reflection equation with a spectral parameter in the case of
finite-dimensional representations over the quantum affine algebra
$U_qL\mathfrak{sl}_2$.