English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

A Deep Learning-Based Method to Detect Hot-Spots in the Visible Video Diagnostics of Wendelstein 7-X

MPS-Authors
/persons/resource/persons108701

Biedermann,  C.       
Stellarator Heating and Optimisation (E3), Max Planck Institute for Plasma Physics, Max Planck Society;

/persons/resource/persons109498

Jakubowski,  M.       
Stellarator Heating and Optimisation (E3), Max Planck Institute for Plasma Physics, Max Planck Society;

/persons/resource/persons109653

König,  R.       
Stellarator Heating and Optimisation (E3), Max Planck Institute for Plasma Physics, Max Planck Society;

/persons/resource/persons209371

Krause,  M.
Stellarator Heating and Optimisation (E3), Max Planck Institute for Plasma Physics, Max Planck Society;

/persons/resource/persons206336

Puig Sitjes,  A.       
Stellarator Dynamics and Transport (E5), Max Planck Institute for Plasma Physics, Max Planck Society;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Szücs, M., Szepesi, T., Biedermann, C., Cseh, G., Jakubowski, M., Kocsis, G., et al. (2022). A Deep Learning-Based Method to Detect Hot-Spots in the Visible Video Diagnostics of Wendelstein 7-X. Journal of Nuclear Engineering, 3(4), 473-479. doi:10.3390/jne3040033.


Cite as: https://hdl.handle.net/21.11116/0000-000C-BC21-B
Abstract
There is no abstract available