English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Machine learning and Bayesian inference in nuclear fusion research: an overview

MPS-Authors
/persons/resource/persons203816

Pavone,  A.       
Stellarator Heating and Optimisation (E3), Max Planck Institute for Plasma Physics, Max Planck Society;

/persons/resource/persons245519

Merlo,  A.       
Stellarator Heating and Optimisation (E3), Max Planck Institute for Plasma Physics, Max Planck Society;

/persons/resource/persons203629

Kwak,  S.       
Stellarator Dynamics and Transport (E5), Max Planck Institute for Plasma Physics, Max Planck Society;

/persons/resource/persons110611

Svensson,  J.
Stellarator Dynamics and Transport (E5), Max Planck Institute for Plasma Physics, Max Planck Society;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Pavone, A., Merlo, A., Kwak, S., & Svensson, J. (2023). Machine learning and Bayesian inference in nuclear fusion research: an overview. Plasma Physics and Controlled Fusion, 65: 053001. doi:10.1088/1361-6587/acc60f.


Cite as: https://hdl.handle.net/21.11116/0000-000E-5312-0
Abstract
There is no abstract available