日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

3D printed titanium carbide MXene-coated polycaprolactone scaffolds for guided neuronal growth and photothermal stimulation

MPS-Authors
/persons/resource/persons283203

Li,  Jianfeng       
Nanophotonics, Integration, and Neural Technology, Max Planck Institute of Microstructure Physics, Max Planck Society;
Max Planck - University of Toronto Centre for Neural Science and Technology, Max Planck Institute of Microstructure Physics, Max Planck Society;

/persons/resource/persons285314

Hashemi,  Payam       
Department of Synthetic Materials and Functional Devices (SMFD), Max Planck Institute of Microstructure Physics, Max Planck Society;

/persons/resource/persons295654

Liu,  Tianyi       
Nanophotonics, Integration, and Neural Technology, Max Planck Institute of Microstructure Physics, Max Planck Society;

/persons/resource/persons286700

Dang,  Ka My
Nanophotonics, Integration, and Neural Technology, Max Planck Institute of Microstructure Physics, Max Planck Society;
Max Planck - University of Toronto Centre for Neural Science and Technology, Max Planck Institute of Microstructure Physics, Max Planck Society;

/persons/resource/persons286697

Brunk,  Michael G. K.       
Nanophotonics, Integration, and Neural Technology, Max Planck Institute of Microstructure Physics, Max Planck Society;
Max Planck - University of Toronto Centre for Neural Science and Technology, Max Planck Institute of Microstructure Physics, Max Planck Society;

/persons/resource/persons265928

Mu,  Xin       
Nanophotonics, Integration, and Neural Technology, Max Planck Institute of Microstructure Physics, Max Planck Society;

/persons/resource/persons265934

Shaygan Nia,  Ali
Department of Synthetic Materials and Functional Devices (SMFD), Max Planck Institute of Microstructure Physics, Max Planck Society;

/persons/resource/persons258003

Sacher,  Wesley D.       
Nanophotonics, Integration, and Neural Technology, Max Planck Institute of Microstructure Physics, Max Planck Society;
Max Planck - University of Toronto Centre for Neural Science and Technology, Max Planck Institute of Microstructure Physics, Max Planck Society;

/persons/resource/persons47863

Feng,  Xinliang       
Department of Synthetic Materials and Functional Devices (SMFD), Max Planck Institute of Microstructure Physics, Max Planck Society;

/persons/resource/persons257612

Poon,  Joyce K. S.       
Nanophotonics, Integration, and Neural Technology, Max Planck Institute of Microstructure Physics, Max Planck Society;
Max Planck - University of Toronto Centre for Neural Science and Technology, Max Planck Institute of Microstructure Physics, Max Planck Society;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)

s43246-024-00503-6.pdf
(出版社版), 4MB

付随資料 (公開)
There is no public supplementary material available
引用

Li, J., Hashemi, P., Liu, T., Dang, K. M., Brunk, M. G. K., Mu, X., Shaygan Nia, A., Sacher, W. D., Feng, X., & Poon, J. K. S. (2024). 3D printed titanium carbide MXene-coated polycaprolactone scaffolds for guided neuronal growth and photothermal stimulation. Communications Materials, 5:. doi:10.1038/s43246-024-00503-6.


引用: https://hdl.handle.net/21.11116/0000-000F-3D5F-4
要旨
The exploration of neural circuitry is paramount for comprehending the computational mechanisms and physiology of the brain. Despite significant advances in materials and fabrication techniques, controlling neuronal connectivity and response in 3D remains a formidable challenge. Here, we introduce a method for engineering the growth of 3D neural circuits with the capability for optical stimulation. We fabricate bioactive interfaces by melt electrospinning writing (MEW) 3D polycaprolactone (PCL) scaffolds followed by coating with titanium carbide (Ti3C2Tx MXene). Beyond enhancing hydrophilicity, cell adhesion, and electrical conductivity, the Ti3C2Tx MXene coating enables optocapacitance-based neuronal stimulation, induced by localized temperature increases upon illumination. This approach offers a pathway for additive manufacturing of neural tissues endowed with optical control, facilitating functional tissue engineering and neural circuit computation.