日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

SARS-CoV-2 Mpro responds to oxidation by forming disulfide and NOS/SONOS bonds

MPS-Authors
/persons/resource/persons249434

Norton-Baker,  B.
Miller Group, Atomically Resolved Dynamics Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;
Department of Chemistry, University of California at Irvine;

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)

s41467-024-48109-3.pdf
(出版社版), 3MB

付随資料 (公開)

suppl.zip
(付録資料), 12MB

引用

Reinke, P. Y. A., Schubert, R., Oberthür, D., Galchenkova, M., Mashhour, A. R., Günther, S., Chretien, A., Round, A., Seychell, B. C., Norton-Baker, B., Kim, C., Schmidt, C., Koua, F. H. M., Tolstikova, A., Ewert, W., Murillo, G. E. P., Mills, G., Kirkwood, H., Brognaro, H., Han, H., Koliyadu, J., Schulz, J., Bielecki, J., Lieske, J., Maracke, J., Knoska, J., Lorenzen, K., Brings, L., Sikorski, M., Kloos, M., Vakili, M., Vagovic, P., Middendorf, P., de Wijn, R., Bean, R., Letrun, R., Han, S., Falke, S., Geng, T., Sato, T., Srinivasan, V., Kim, Y., Yefanov, O. M., Gelisio, L., Beck, T., Doré, A. S., Mancuso, A. P., Betzel, C., Bajt, S., Redecke, L., Chapman, H. N., Meents, A., Turk, D., Hinrichs, W., & Lane, T. J. (2024). SARS-CoV-2 Mpro responds to oxidation by forming disulfide and NOS/SONOS bonds. Nature Communications, 15(1):. doi:10.1038/s41467-024-48109-3.


引用: https://hdl.handle.net/21.11116/0000-000F-47B9-1
要旨
The main protease (Mpro) of SARS-CoV-2 is critical for viral function and a key drug target. Mpro is only active when reduced; turnover ceases upon oxidation but is restored by re-reduction. This suggests the system has evolved to survive periods in an oxidative environment, but the mechanism of this protection has not been confirmed. Here, we report a crystal structure of oxidized Mpro showing a disulfide bond between the active site cysteine, C145, and a distal cysteine, C117. Previous work proposed this disulfide provides the mechanism of protection from irreversible oxidation. Mpro forms an obligate homodimer, and the C117-C145 structure shows disruption of interactions bridging the dimer interface, implying a correlation between oxidation and dimerization. We confirm dimer stability is weakened in solution upon oxidation. Finally, we observe the protein’s crystallization behavior is linked to its redox state. Oxidized Mpro spontaneously forms a distinct, more loosely packed lattice. Seeding with crystals of this lattice yields a structure with an oxidation pattern incorporating one cysteine-lysine-cysteine (SONOS) and two lysine-cysteine (NOS) bridges. These structures further our understanding of the oxidative regulation of Mpro and the crystallization conditions necessary to study this structurally.