日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

Solar lasers: Why not?

MPS-Authors
/persons/resource/persons298670

Küblböck,  Michael
Fattahi Research Group, Research Groups, Max Planck Institute for the Science of Light, Max Planck Society;
Friedrich-Alexander-Universität Erlangen-Nürnberg, External Organizations;

/persons/resource/persons296793

Will,  Jonathan
Fattahi Research Group, Research Groups, Max Planck Institute for the Science of Light, Max Planck Society;
Friedrich-Alexander-Universität Erlangen-Nürnberg, External Organizations;

/persons/resource/persons61039

Fattahi,  Hanieh
Fattahi Research Group, Research Groups, Max Planck Institute for the Science of Light, Max Planck Society;
Friedrich-Alexander-Universität Erlangen-Nürnberg, External Organizations;

External Resource
There are no locators available
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)

050903_1_5.0209355.pdf
(出版社版), 8MB

付随資料 (公開)
There is no public supplementary material available
引用

Küblböck, M., Will, J., & Fattahi, H. (2024). Solar lasers: Why not? APL Photonics, 9:. doi:10.1063/5.0209355.


引用: https://hdl.handle.net/21.11116/0000-000F-59AE-A
要旨
In this paper, we investigate the role of solar laser technology as a pivotal element in advancing sustainable and renewable energy. We begin by examining its wide-ranging applications across diverse fields, including remote communication, energy storage through magnesium production, and space exploration and communication. We address the current challenges faced by solar laser technology, which include the necessity for miniaturization, operation at natural sunlight intensity without the need for concentrated power, and efficient energy conversion. These improvements are essential to elevate their operational performance, beam quality, and cost-effectiveness. The promising prospects of space-based solar-pumped lasers and their potential role in magnesium generation for a sustainable energy future highlight some of the vast application opportunities that this novel technology could offer.