Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Enhancing corrosion-resistant alloy design through natural language processing and deep learning

MPG-Autoren
/persons/resource/persons263412

Sasidhar,  Kasturi Narasimha
Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

/persons/resource/persons125165

Hamidi Siboni,  Nima
Computational Sustainable Metallurgy, Microstructure Physics and Alloy Design, Max Planck Institute for Sustainable Materials GmbH, Max Planck Society;
DeepMetis, Lohmühlenstraße 65, 12435 Berlin, Germany;

/persons/resource/persons179523

Mianroodi,  Jaber Rezaei
Computational Sustainable Metallurgy, Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;
Ergodic Labs, Lohmühlenstraße 65, 12435, Berlin, Germany;

/persons/resource/persons125346

Rohwerder,  Michael
Corrosion, Interface Chemistry and Surface Engineering, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

/persons/resource/persons125293

Neugebauer,  Jörg
Computational Materials Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

/persons/resource/persons125330

Raabe,  Dierk
Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

sciadv.adg7992.pdf
(Verlagsversion), 2MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Sasidhar, K. N., Hamidi Siboni, N., Mianroodi, J. R., Rohwerder, M., Neugebauer, J., & Raabe, D. (2024). Enhancing corrosion-resistant alloy design through natural language processing and deep learning. Science Advances, 9(32): eadg7992. doi:10.1126/sciadv.adg7992.


Zitierlink: https://hdl.handle.net/21.11116/0000-000F-AAB3-7
Zusammenfassung
We propose strategies that couple natural language processing with deep learning to enhance machine capability for corrosion-resistant alloy design. First, accuracy of machine learning models for materials datasets is often limited by their inability to incorporate textual data. Manual extraction of numerical parameters from descriptions of alloy processing or experimental methodology inevitably leads to a reduction in information density. To overcome this, we have developed a fully automated natural language processing approach to transform textual data into a form compatible for feeding into a deep neural network. This approach has resulted in a pitting potential prediction accuracy substantially beyond state of the art. Second, we have implemented a deep learning model with a transformed-input feature space, consisting of a set of elemental physical/chemical property?based numerical descriptors of alloys replacing alloy compositions. This helped identification of those descriptors that are most critical toward enhancing their pitting potential. In particular, configurational entropy, atomic packing efficiency, local electronegativity differences, and atomic radii differences proved to be the most critical. Deep learning frameworks utilizing experimental data enhance machine comprehension related to metallic corrosion.