Researcher Portfolio
Krychowiak, Maciej
Stellarator Edge and Divertor Physics (E4), Max Planck Institute for Plasma Physics, Max Planck Society, Stellarator Heating and Optimisation (E3), Max Planck Institute for Plasma Physics, Max Planck Society, W7-X: Diagnostics (DIA), Max Planck Institute for Plasma Physics, Max Planck Society, W7-X: Physics (PH), Max Planck Institute for Plasma Physics, Max Planck Society
Researcher Profile
Position: W7-X: Physics (PH), Max Planck Institute for Plasma Physics, Max Planck Society
Position: W7-X: Diagnostics (DIA), Max Planck Institute for Plasma Physics, Max Planck Society
Position: Stellarator Edge and Divertor Physics (E4), Max Planck Institute for Plasma Physics, Max Planck Society
Position: Stellarator Heating and Optimisation (E3), Max Planck Institute for Plasma Physics, Max Planck Society
Additional IDs: ORCID:
https://orcid.org/0009-0001-4141-5558
Researcher ID: https://pure.mpg.de/cone/persons/resource/persons109720
External references
WorldCat
Search for Krychowiak, Maciej
Google Scholar
Search for Krychowiak, Maciej
Publications
(1 - 25 of 93)
: Wenk, S., Rainaldi, V., Schann, K., He, H., Bouzon, M., Döring, V., Lindner, S. N., & Bar-Even, A. (2025). Evolution-assisted engineering of E. coli enables growth on formic acid at ambient CO2 via the Serine Threonine Cycle. Metabolic Engineering, 88, 14-24. doi:10.1016/j.ymben.2024.10.007. [PubMan] : Dronsella, B., Orsi, E., Schulz-Mirbach, H., Benito-Vaquerizo, S., Yilmaz, S., Glatter, T., Bar-Even, A., Erb, T. J., & Claassens, N. J. (2025). One-carbon fixation via the synthetic reductive glycine pathway exceeds yield of the Calvin cycle. Nature Microbiology, 10, 646-653. doi:10.1038/s41564-025-01941-9. [PubMan] : Wenk, S., Rainaldi, V., Schann, K., He, H., Bouzon, M., Döring, V., Lindner, S. N., & Bar-Even, A. (2025). Evolution-assisted engineering of E. coli enables growth on formic acid at ambient CO2 via the Serine Threonine Cycle. Metabolic Engineering, 88, 14-24. doi:10.1016/j.ymben.2024.10.007. [PubMan] : Orsi, E., Schulz-Mirbach, H., Cotton, C. A. R., Satanowski, A., Petri, H. M., Arnold, S. L., Grabarczyk, N., Verbakel, R., Jensen, K. S., Donati, S., Paczia, N., Glatter, T., Küffner, A. M., Chotel, T., Schillmüller, F., De Maria, A., He, H., Lindner, S. N., Noor, E., Bar-Even, A., Erb, T. J., & Nikel, P. I. (2025). Computation-aided designs enable developing auxotrophic metabolic sensors for wide-range glyoxylate and glycolate detection. Nature Communications, 16(1): 2168. doi:10.1038/s41467-025-57407-3. [PubMan] : Schann, K., Bakker, J., Boinot, M., Kuschel, P., He, H., Nattermann, M., Paczia, N., Erb, T., Bar-Even, A., & Wenk, S. (2024). Design, construction and optimization of formaldehyde growth biosensors with broad application in biotechnology. Microbial Biotechnology, 17(7): e14527. doi:10.1111/1751-7915.14527. [PubMan] : Schulz-Mirbach, H. A. M., Kruesemann, J. L., Andreadaki, T., Nerlich, J. N., Mavrothalassiti, E., Boecker, S., Schneider, P., Weresow, M., Abdelwahab, O., Paczia, N., Dronsella, B., Erb, T. J., Bar-Even, A., Klamt, S., & Lindner, S. N. (2024). Engineering new-to-nature biochemical conversions by combining fermentative metabolism with respiratory modules. Nature Communications, 15(1): 6725. doi:10.1038/s41467-024-51029-x. [PubMan] : Bysani, V. R., Alam, A. S., Bar-Even, A., & Machens, F. (2023). Engineering and evolution of the complete Reductive Glycine Pathway in Saccharomyces cerevisiae for formate and CO2 assimilation. Metabolic Engineering, 81, 167-181. doi:10.1016/j.ymben.2023.11.007. [PubMan] : Schada v. Borzyskowsi, L., Schulz-Mirbach, H., Troncoso Castellanos, M., Severi, F., Gomez Coronado, P. A., Paczia, N., Glatter, T., Bar-Even, A., Lindner, S. N., & Erb, T. J. (2023). Implementation of the β-hydroxyaspartate cycle increases growth performance of Pseudomonas putida on the PET monomer ethylene glycol. Metabolic Engineering, 76, 97-109. doi:10.1016/j.ymben.2023.01.011. [PubMan] : Schada von Borzyskowski, L., Schulz-Mirbach, H., Troncoso Castellanos, M., Severi, F., Gomez Coronado, P. A., Paczia, N., Glatter, T., Bar-Even, A., Lindner, S. N., & Erb, T. (2023). Implementation of the β-hydroxyaspartate cycle increases growth performance of Pseudomonas putida on the PET monomer ethylene glycol. Metabolic Engineering, 76, 97-109. doi:10.1016/j.ymben.2023.01.011. [PubMan] : Kim, S., Giraldo, N., Rainaldi, V., Machens, F., Collas, F., Kubis, A., Kensy, F., Bar-Even, A., & Lindner, S. N. (2023). Optimizing E. coli as a formatotrophic platform for bioproduction via the reductive glycine pathway. Frontiers in Bioengineering and Biotechnology, 11: 1091899. doi:10.3389/fbioe.2023.1091899. [PubMan] : Wu, T., Gomez Coronado, P. A., Kubis, A., Lindner, S. N., Marlière, P., Erb, T., Bar-Even, A., & He, H. (2023). Engineering a synthetic energy-efficient formaldehyde assimilation cycle in Escherichia coli. Nature Communications, 14: 8490. doi:10.1038/s41467-023-44247-2. [PubMan] : Schulz-Mirbach, H., Mueller, A., Wu, T., Pfister, P., Aslan, S., Schada von Borzyskowski, L., Erb, T., Bar-Even, A., & Lindner, S. N. (2022). On the flexibility of the cellular amination network in E. coli. eLife, 11: e77492. doi:10.7554/eLife.77492. [PubMan] : Iacometti, C., Marx, K., Hönick, M., Biletskaia, V., Schulz-Mirbach, H., Dronsella, B., Satanowski, A., Delmas, V., Berger, A., Dubois, I., Bouzon, M., Döring, V., Noor, E., Bar-Even, A., & Lindner, S. N. (2022). Activating Silent Glycolysis Bypasses in Escherichia coli. BioDesign Research, 2022: 9859643. doi:10.34133/2022/9859643. [PubMan] : Kirst, H., Ferlez, B., Lindner, S. N., Cotton, C. A. R., Bar-Even, A., & Kerfeld, C. (2022). Toward a glycyl radical enzyme containing synthetic bacterial microcompartment to produce pyruvate from formate and acetate. Proceedings of the National Academy of Sciences of the United States of America, 119(8): e2116871119. doi:10.1073/pnas.2116871119. [PubMan] : Bouzon, M., Döring, V., Dubois, I., Berger, A., Stoffel, G., Ramirez, L. C., Meyer, S., Fouré, M., Roche, D., Perret, A., Erb, T., Bar-Even, A., & Lindner, S. N. (2021). Change in cofactor specificity of oxidoreductases by adaptive evolution of an escherichia coli nadph-auxotrophic strain. mBio, 12(4): e00329-21. doi:10.1128/mBio.00329-21. [PubMan] : Scheffen, M., Marchal, D. G., Beneyton, T., Schuller, S., Klose, M., Diehl, C., Lehmann, J., Pfister, P., Carillo, M., He, H., Aslan, S., Cortina, N. S., Claus, P., Bollschweiler, D., Baret, J.-C., Schuller, J., Zarzycki, J., Bar-Even, A., & Erb, T. J. (2021). A new-to-nature carboxylation module to improve natural and synthetic CO2 fixation. Nature Catalysis, 4, 105-115. doi:10.1038/s41929-020-00557-y. [PubMan] : Leger, D., Matassa, S., Noor, E., Shepon, A., Milo, R., & Bar-Even, A. (2021). Photovoltaic-driven microbial protein production can use land and sunlight more efficiently than conventional crops. Proceedings of the National Academy of Sciences of the United States of America, 118(26): e2015025118. doi:10.1073/pnas.2015025118. [PubMan] : Scheffen, M., Marchal, D., Beneyton, T., Schuller, S., Klose, M., Diehl, C., Lehmann, J., Pfister, P., Carrillo, M., He, H., Aslan, S., Cortina, N., Claus, P., Bollschweiler, D., Baret, J.-C., Schuller, J., Zarzycki, J., Bar-Even, A., & Erb, T. (2021). A new-to-nature carboxylation module to improve natural and synthetic CO2 fixation. Nature Catalysis, 4, 105-115. doi:10.1038/s41929-020-00557-y. [PubMan] : Satanowski, A., Dronsella, B., Noor, E., Vögeli, B., He, H., Wichmann, P., Erb, T. J., Lindner, S. N., & Bar-Even, A. (2020). Awakening a latent carbon fixation cycle in Escherichia coli. NATURE COMMUNICATIONS, 11(1): 5812. doi:10.1038/s41467-020-19564-5. [PubMan] : Cotton, C. A. R., Bernhardsgrütter, I., He, H., Burgener, S., Schulz, L., Paczia, N., Dronsella, B., Erban, A., Toman, S., Dempfle, M., De Maria, A., Kopka, J., Lindner, S. N., Erb, T. J., & Bar-Even, A. (2020). Underground isoleucine biosynthesis pathways in E. coli. ELIFE, 9: e54207. doi:10.7554/eLife.54207. [PubMan] : Cotton, C. A. R., Bernhardsgrütter, I., He, H., Burgener, S., Schulz, L., Paczia, N., Dronsella, B., Erban, A., Toman, S., Dempfle, M., de Maria, A., Kopka, J., Lindner, S. N., Erb, T. J., & Bar-Even, A. (2020). Underground isoleucine biosynthesis pathways in E. coli. eLife, 9: e54207. doi:10.7554/eLife.54207. [PubMan] : Ramirez, L. C., Calvo Tusell, C., Stoffel, G. M. M., Lindner, S. N., Osuna, S., Erb, T. J., Garcia-Borràs, M., Bar-Even, A., & Acevedo-Rocha, C. G. (2020). In vivo selection for formate dehydrogenases with high efficiency and specificity towards NADP+. ACS Catalysis, 10, 7512-7525. doi:10.1021/acscatal.0c01487. [PubMan] : Claassens, N. J., Bordanaba-Florit, G., Cotton, C. A. R., de Maria, A., Finger-Bou, M., Friedeheim, L., Giner-Laguarda, N., Munar-Palmer, M., Newell, W., Scarinci, G., Verbunt, J., de Vries, S., Yilmaz, S., & Bar-Even, A. (2020). Replacing the Calvin cycle with the reductive glycine pathway in Cupriavidus necator. Metabolic Engineering, 62, 30-41. doi:10.1016/j.ymben.2020.08.004. [PubMan] : Flamholz, A., Dugan, E., Blikstad, C., Gleizer, S., Ben-Nissan, R., Amram, S., Antonovsky, N., Ravishankar, S., Noor, E., Bar-Even, A., Milo, R., & Savage, D. (2020). Functional reconstitution of a bacterial co2 concentrating mechanism in E. coli. eLife, 9: e59882, pp. 1-57. doi:10.7554/eLife.59882. [PubMan] : Kim, S., Lindner, S. N., Aslan, S., Yishai, O., Wenk, S., Schann, K., & Bar-Even, A. (2020). Growth of E. coli on formate and methanol via the reductive glycine pathway. Nature Chemical Biology, 16(5), 538-545. doi:10.1038/s41589-020-0473-5. [PubMan]