Researcher Portfolio

 
   

Dr. Zeilfelder, Frank

Computer Graphics, MPI for Informatics, Max Planck Society  

 

Researcher Profile

 
Position: Computer Graphics, MPI for Informatics, Max Planck Society
Researcher ID: https://pure.mpg.de/cone/persons/resource/persons45792

External references

 

Publications

 
 
 : Nürnberger, G., Rössl, C., & Zeilfelder, F. (2007). High-quality Rendering of Iso-surfaces Extracted from Quadratic Super Splines. In P. Chenin (Ed.), Curve and Surface Design (pp. 203-212). Brentwood, Tenn.: Nashboro Press. [PubMan] : Nürnberger, G., Rössl, C., Zeilfelder, F., & Seidel, H.-P. (2005). Quasi-Interpolation by Quadratic Piecewise Polynomials in Three Variables. Computer Aided Geometric Design, 22(3), 221-249. doi:10.1016/j.cagd.2004.11.002. [PubMan] : Schlosser, G., Hesser, J., Zeilfelder, F., Rössl, C., Männer, R., Nürnberger, G., & Seidel, H.-P. (2005). Fast Visualization by Shear-warp on Quadratic Super-spline Models Using Wavelet Data Decompositions. In C. T. Silva, E. Gröller, & H. Rushmeier (Eds.), 2005 IEEE Visualization Conference (pp. 351-358). Los Alamitos, USA: IEEE. [PubMan] : Rössl, C., Zeilfelder, F., Nürnberger, G., & Seidel, H.-P. (2004). Reconstruction of Volume Data with Quadratic Super Splines. IEEE Transactions on Visualization and Computer Graphics, 10(4), 397-409. doi:10.1109/TVCG.2004.16. [PubMan] : Hangelbroek, T., Nürnberger, G., Rössl, C., Seidel, H.-P., & Zeilfelder, F. (2004). Dimension of C1-Splines on Type-6 Tetrahedral Partitions. Journal of Approximation Theory, 131(2), 157-184. doi:10.1016/j.jat.2004.09.002. [PubMan] : Rössl, C., Zeilfelder, F., Nürnberger, G., & Seidel, H.-P. (2004). Spline Approximation of General Volumetric Data. In G. Elber, N. Patrikalakis, & P. Brunet (Eds.), Proceedings of the 9th ACM Symposium on Solid Modeling and Applications (SM 2004) (pp. 71-82). Aire-la-Ville, Switzerland: Eurographics. [PubMan] : Hangelbroek, T., Nürnberger, G., Rössl, C., Seidel, H.-P., & Zeilfelder, F.(2003). The dimension of $C^1$ splines of arbitrary degree on a tetrahedral partition (MPI-I-2003-4-005). Saarbrücken: Max-Planck-Institut für Informatik. [PubMan] : Rössl, C., Zeilfelder, F., Nürnberger, G., & Seidel, H.-P.(2003). Visualization of volume data with quadratic super splines (MPI-I-2004-4-006). Saarbrücken: Max-Planck-Institut für Informatik. Retrieved from http://domino.mpi-inf.mpg.de/internet/reports.nsf/NumberView/2004-4-006. [PubMan] : Rössl, C., Zeilfelder, F., Nürnberger, G., & Seidel, H.-P. (2003). Visualization of Volume Data with Quadratic Super Splines. In G. Turk, J. van Wijk, & R. Moorhead (Eds.), IEEE Visualization 2003 (pp. 393-400). Los Alamitos, USA: IEEE. [PubMan] : Nürnberger, G., Steidl, G., & Zeilfelder, F. (2003). Explicit estimates for bivariate hierarchical bases. Communications in Applied Analysis, 7, 133-151. [PubMan] : Zeilfelder, F., & Seidel, H.-P. (2002). Splines over Triangulations. In G. Farin, J. Hoschek, M.-S. Kim, & D. Abma (Eds.), The Handbook of Computer Aided Geometric Design (pp. 701-722). Amsterdam, the Netherlands: Elsevier. [PubMan] : Nürnberger, G., & Zeilfelder, F. (2001). Local Lagrange interpolation on Powell-Sabin triangulations and terrain modelling. In W. Haussmann, K. Jetter, & M. Reimer (Eds.), Recent Progress in Multivariate Approximation: 4th International Conference, Witten-Bommerholz (Germany), September 2000 (pp. 227-244). Basel, Switzerland: Birkhäuser. [PubMan] : Haber, J., Zeilfelder, F., Davydov, O., & Seidel, H.-P. (2001). Smooth Approximation and Rendering of Large Scattered Data Sets. In T. Ertl, K. Joy, & A. Varshney (Eds.), Proceedings of the 2001 IEEE Conference on Visualization (pp. 341-347;571). Los Alamitos, USA: IEEE. [PubMan] : Zeilfelder, F., & Nürnberger, G. (2001). Local Lagrange Interpolation by Cubic Splines on a Class of Triangulations. In K. Kopotun, T. Lyche, & M. Neamtu (Eds.), Trends in Approximation Theory (pp. 333-350). Nashville, USA: Vanderbilt University. [PubMan] : Nürnberger, G., Schumaker, L. L., & Zeilfelder, F. (2001). Local Lagrange interpolation by bivariate cubic C¹ splines. In T. Lyche, & L. L. Schumaker (Eds.), Mathematical Methods for Curves and Surfaces: Oslo 2000 (pp. 393-403). Nashville, USA: Vanderbilt University. [PubMan] : Zeilfelder, F., Davydov, O., & Nürnberger, G. (2001). Bivariate Spline interpolation with optimal approximation order. Constructive Approximation, 17(2), 181-208. [PubMan] : Davydov, O., Nürnberger, G., & Zeilfelder, F. (2000). Cubic Spline Interpolation on Nested Polygon Triangulations. In A. Cohen, C. Rabut, & L. L. Schumaker (Eds.), Curve and Surface Fitting, Saint-Malo 1999 (pp. 161-170). Nashville, USA: Vanderbilt University. [PubMan] : Nürnberger, G., & Zeilfelder, F. (2000). Developments in bivariate spline interpolation. Journal of Computational and Applied Mathematics, 120(1/2), 125-152. [PubMan] : Nürnberger, G., & Zeilfelder, F. (2000). Interpolation by spline spaces on classes of triangulations. Journal of Computational and Applied Mathematics, 119(1/2), 347-376. [PubMan] : Zeilfelder, F. (1999). Strong unicity of best uniform approximation from periodic spline spaces. Journal of Approximation Theory, 99(2), 1-29. [PubMan] : Zeilfelder, F., Davydov, O., & Nürnberger, G. (1999). Interpolation by splines on triangulations. In M. W. Müller, M. D. Buhmann, D. H. Mache, & M. Felten (Eds.), New Developments in Approximation Theory. 2nd International Dortmund Meeting (IDoMAT) ’98 (pp. 49-70). Basel, Switzerland: Birkhäuser. [PubMan]