English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Ablation of cholesterol biosynthesis in neural stem cells increases their VEGF expression and angiogenesis but causes neuron apoptosis

Saito, K., Dubreuil, V., Arai, Y., Wilsch-Bräuninger, M., Schwudke, D., Saher, G., et al. (2009). Ablation of cholesterol biosynthesis in neural stem cells increases their VEGF expression and angiogenesis but causes neuron apoptosis. Proceedings of the National Academy of Sciences of the United States of America, 106(20), 8350-8355.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Saito, Kanako1, Author           
Dubreuil, Veronique1, Author           
Arai, Yoko1, Author           
Wilsch-Bräuninger, Michaela1, Author           
Schwudke, Dominik1, Author           
Saher, Gesine, Author
Miyata, Takaki, Author
Breier, Georg, Author
Thiele, Christoph1, Author           
Shevchenko, Andrej1, Author           
Nave, Klaus-Armin, Author
Huttner, Wieland B1, Author           
Affiliations:
1Max Planck Institute of Molecular Cell Biology and Genetics, Max Planck Society, ou_2340692              

Content

show
hide
Free keywords: -
 Abstract: Although sufficient cholesterol supply is known to be crucial for neurons in the developing mammalian brain, the cholesterol requirement of neural stem and progenitor cells in the embryonic central nervous system has not been addressed. Here we have conditionally ablated the activity of squalene synthase (SQS), a key enzyme for endogenous cholesterol production, in the neural stem and progenitor cells of the ventricular zone (VZ) of the embryonic mouse brain. Mutant embryos exhibited a reduced brain size due to the atrophy of the neuronal layers, and died at birth. Analyses of the E11.5-E15.5 dorsal telencephalon and diencephalon revealed that this atrophy was due to massive apoptosis of newborn neurons, implying that this progeny of the SQS-ablated neural stem and progenitor cells was dependent on endogenous cholesterol biosynthesis for survival. Interestingly, the neural stem and progenitor cells of the VZ, the primary target of SQS inactivation, did not undergo significant apoptosis. Instead, vascular endothelial growth factor (VEGF) expression in these cells was strongly upregulated via a hypoxia-inducible factor-1-independent pathway, and angiogenesis in the VZ was increased. Consistent with an increased supply of lipoproteins to these cells, the level of lipid droplets containing triacylglycerides with unsaturated fatty acyl chains was found to be elevated. Our study establishes a direct link between intracellular cholesterol levels, VEGF expression, and angiogenesis. Moreover, our data reveal a hitherto unknown compensatory process by which the neural stem and progenitor cells of the developing mammalian brain evade the detrimental consequences of impaired endogenous cholesterol biosynthesis.

Details

show
hide
Language(s):
 Dates: 2009
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: eDoc: 463121
Other: 1225
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Proceedings of the National Academy of Sciences of the United States of America
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 106 (20) Sequence Number: - Start / End Page: 8350 - 8355 Identifier: -