English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Spin-Holstein models in trapped-ion systems

Knörzer, J., Shi, T., Demler, E. A., & Cirac, J. I. (2022). Spin-Holstein models in trapped-ion systems. Physical Review Letters, 128(12): 120404. doi:10.1103/PhysRevLett.128.120404.

Item is

Files

show Files
hide Files
:
2108.13730v1.pdf (Preprint), 5MB
Name:
2108.13730v1.pdf
Description:
-
OA-Status:
Not specified
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-
:
6270.pdf (Publisher version), 2MB
Name:
6270.pdf
Description:
-
OA-Status:
Not specified
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-

Locators

show

Creators

show
hide
 Creators:
Knörzer, Johannes1, 2, 3, Author           
Shi, Tao, Author
Demler, Eugene A.4, Author           
Cirac, J. Ignacio1, 2, 4, Author           
Affiliations:
1Theory, Max Planck Institute of Quantum Optics, Max Planck Society, ou_1445571              
2MCQST - Munich Center for Quantum Science and Technology, External Organizations, ou_3330166              
3IMPRS (International Max Planck Research School), Max Planck Institute of Quantum Optics, Max Planck Society, ou_3164443              
4Max Planck Harvard Center, Max Planck Institute of Quantum Optics, Max Planck Society, ou_2364729              

Content

show
hide
Free keywords: Condensed Matter, Superconductivity, cond-mat.supr-con
 Abstract: In this work, we highlight how trapped-ion quantum systems can be used to study generalized Holstein models, and benchmark expensive numerical calculations. We study a particular spin-Holstein model that can be implemented with arrays of ions confined by individual microtraps, and that is closely related to the Holstein model of condensed matter physics, used to describe electron-phonon interactions. In contrast to earlier proposals, we focus on realizing many-electron systems and inspect the competition between charge-density wave order, fermion pairing and phase separation. In our numerical study, we employ a combination of complementary approaches, based on non-Gaussian variational ansatz states and matrix product states, respectively. We demonstrate that this hybrid approach outperforms standard density-matrix renormalization group calculations.

Details

show
hide
Language(s): eng - English
 Dates: 2021-08-312022-03-072022-03-252022-03-25
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: arXiv: 2108.13730v1
DOI: 10.1103/PhysRevLett.128.120404
Other: 6270
 Degree: -

Event

show

Legal Case

show

Project information

show hide
Project name : -
Grant ID : -
Funding program : Germany's Excellence Strategy - EXC-2111 - 390814868
Funding organization : Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)

Source 1

show
hide
Title: Physical Review Letters
  Abbreviation : Phys. Rev. Lett.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Woodbury, N.Y. : American Physical Society
Pages: - Volume / Issue: 128 (12) Sequence Number: 120404 Start / End Page: - Identifier: ISSN: 0031-9007
CoNE: https://pure.mpg.de/cone/journals/resource/954925433406_1