English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Kähler geometry of black holes and gravitational instantons

Aksteiner, S., & Araneda, B. (2023). Kähler geometry of black holes and gravitational instantons. Physical Review Letters, 13(16): 161502. doi:10.1103/PhysRevLett.130.161502.

Item is

Files

show Files
hide Files
:
2207.10039.pdf (Preprint), 154KB
Name:
2207.10039.pdf
Description:
File downloaded from arXiv at 2022-07-21 09:36
OA-Status:
Green
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
:
PhysRevLett.130.161502.pdf (Publisher version), 224KB
Name:
PhysRevLett.130.161502.pdf
Description:
Open Access
OA-Status:
Hybrid
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-

Locators

show

Creators

show
hide
 Creators:
Aksteiner, Steffen1, Author           
Araneda, Bernardo1, Author           
Affiliations:
1Geometry and Gravitation, AEI-Golm, MPI for Gravitational Physics, Max Planck Society, ou_3214076              

Content

show
hide
Free keywords: General Relativity and Quantum Cosmology, gr-qc,High Energy Physics - Theory, hep-th
 Abstract: We obtain a closed formula for the Kaehler potential of a broad class of
four-dimensional Lorentzian or Euclidean conformal "Kaehler" geometries,
including the Plebanski-Demianski class and various gravitational instantons
such as Fubini-Study and Chen-Teo. We show that the Kaehler potentials of
Schwarzschild and Kerr are related by a Newman-Janis shift. Our method also
shows that a class of supergravity black holes, including the Kerr-Sen
spacetime, is Hermitian (but not conformal Kaehler). We finally show that the
integrability conditions of complex structures lead naturally to the
(non-linear) Weyl double copy, and we give new vacuum and non-vacuum examples
of this relation.

Details

show
hide
Language(s):
 Dates: 2022-07-202023
 Publication Status: Issued
 Pages: 6 pages
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: arXiv: 2207.10039
DOI: 10.1103/PhysRevLett.130.161502
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Physical Review Letters
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 13 (16) Sequence Number: 161502 Start / End Page: - Identifier: -