English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Copy-number variations involving the IHH locus are associated with syndactyly and craniosynostosis.

MPS-Authors
/persons/resource/persons50386

Klopocki,  E.
Research Group Development & Disease (Head: Stefan Mundlos), Max Planck Institute for Molecular Genetics, Max Planck Society;

/persons/resource/persons50548

Seemann,  P.
Research Group Development & Disease (Head: Stefan Mundlos), Max Planck Institute for Molecular Genetics, Max Planck Society;

/persons/resource/persons50578

Stricker,  S.
Research Group Development & Disease (Head: Stefan Mundlos), Max Planck Institute for Molecular Genetics, Max Planck Society;

/persons/resource/persons50196

Hecht,  J.
Research Group Development & Disease (Head: Stefan Mundlos), Max Planck Institute for Molecular Genetics, Max Planck Society;

/persons/resource/persons50437

Mundlos,  S.
Research Group Development & Disease (Head: Stefan Mundlos), Max Planck Institute for Molecular Genetics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Klopocki, E., Lohan, S., Brancati, F., Koll, R., Brehm, A., Seemann, P., et al. (2011). Copy-number variations involving the IHH locus are associated with syndactyly and craniosynostosis. American Journal of Human Genetics, 88(1), 70-75. doi:i:10.1016/j.ajhg.2010.11.006.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0010-77D2-F
Abstract
Indian hedgehog (IHH) is a secreted signaling molecule of the hedgehog family known to play important roles in the regulation of chondrocyte differentiation, cortical bone formation, and the development of joints. Here, we describe that copy-number variations of the IHH locus involving conserved noncoding elements (CNEs) are associated with syndactyly and craniosynostosis. These CNEs are able to drive reporter gene expression in a pattern highly similar to wild-type Ihh expression. We postulate that the observed duplications lead to a misexpression and/or overexpression of IHH and by this affect the complex regulatory signaling network during digit and skull development.