English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Origin of a folded repeat protein from an intrinsically disordered ancestor

MPS-Authors
/persons/resource/persons272592

Zhu,  H
Department Protein Evolution, Max Planck Institute for Developmental Biology, Max Planck Society;

/persons/resource/persons273756

Sepulveda,  E
Department Protein Evolution, Max Planck Institute for Developmental Biology, Max Planck Society;

/persons/resource/persons271510

Hartmann,  MD
Department Protein Evolution, Max Planck Institute for Developmental Biology, Max Planck Society;
Molecular Recognition and Catalysis Group, Department Protein Evolution, Max Planck Institute for Developmental Biology, Max Planck Society;

/persons/resource/persons273758

Kogenaru,  M
Department Protein Evolution, Max Planck Institute for Developmental Biology, Max Planck Society;

/persons/resource/persons272916

Ursinus,  A
Department Protein Evolution, Max Planck Institute for Developmental Biology, Max Planck Society;
Protein Folding, Unfolding and Degradation Group, Department Protein Evolution, Max Planck Institute for Developmental Biology, Max Planck Society;

/persons/resource/persons273296

Sulz,  E
Department Protein Evolution, Max Planck Institute for Developmental Biology, Max Planck Society;

/persons/resource/persons77670

Albrecht,  R
Department Protein Evolution, Max Planck Institute for Developmental Biology, Max Planck Society;
Molecular Recognition and Catalysis Group, Department Protein Evolution, Max Planck Institute for Developmental Biology, Max Planck Society;

/persons/resource/persons271255

Coles,  M
Department Protein Evolution, Max Planck Institute for Developmental Biology, Max Planck Society;
Transmembrane Signal Transduction Group, Department Protein Evolution, Max Planck Institute for Developmental Biology, Max Planck Society;

/persons/resource/persons272291

Martin,  J
Department Protein Evolution, Max Planck Institute for Developmental Biology, Max Planck Society;
Protein Folding, Unfolding and Degradation Group, Department Protein Evolution, Max Planck Institute for Developmental Biology, Max Planck Society;

/persons/resource/persons78342

Lupas,  AN
Department Protein Evolution, Max Planck Institute for Developmental Biology, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Zhu, H., Sepulveda, E., Hartmann, M., Kogenaru, M., Ursinus, A., Sulz, E., et al. (2016). Origin of a folded repeat protein from an intrinsically disordered ancestor. eLife, 5(26): e16761. doi:10.7554/eLife.16761.


Cite as: https://hdl.handle.net/21.11116/0000-000A-7F21-3
Abstract
Repetitive proteins are thought to have arisen through the amplification of subdomain-sized peptides. Many of these originated in a non-repetitive context as cofactors of RNA-based replication and catalysis, and required the RNA to assume their active conformation. In search of the origins of one of the most widespread repeat protein families, the tetratricopeptide repeat (TPR), we identified several potential homologs of its repeated helical hairpin in non-repetitive proteins, including the putatively ancient ribosomal protein S20 (RPS20), which only becomes structured in the context of the ribosome. We evaluated the ability of the RPS20 hairpin to form a TPR fold by amplification and obtained structures identical to natural TPRs for variants with 2-5 point mutations per repeat. The mutations were neutral in the parent organism, suggesting that they could have been sampled in the course of evolution. TPRs could thus have plausibly arisen by amplification from an ancestral helical hairpin.