日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

Structure and Activity of the N-Terminal Substrate Recognition Domains in Proteasomal ATPases

MPS-Authors
/persons/resource/persons277403

Djuranovic,  S
Department Protein Evolution, Max Planck Institute for Developmental Biology, Max Planck Society;

/persons/resource/persons271510

Hartmann,  MD
Department Protein Evolution, Max Planck Institute for Developmental Biology, Max Planck Society;

/persons/resource/persons83949

Habeck,  M
Department Protein Evolution, Max Planck Institute for Developmental Biology, Max Planck Society;

/persons/resource/persons272916

Ursinus,  A
Department Protein Evolution, Max Planck Institute for Developmental Biology, Max Planck Society;
Protein Folding, Unfolding and Degradation Group, Department Protein Evolution, Max Planck Institute for Developmental Biology, Max Planck Society;

/persons/resource/persons272291

Martin,  J
Department Protein Evolution, Max Planck Institute for Developmental Biology, Max Planck Society;
Protein Folding, Unfolding and Degradation Group, Department Protein Evolution, Max Planck Institute for Developmental Biology, Max Planck Society;

/persons/resource/persons78342

Lupas,  AN
Department Protein Evolution, Max Planck Institute for Developmental Biology, Max Planck Society;

/persons/resource/persons78923

Zeth,  K
Department Protein Evolution, Max Planck Institute for Developmental Biology, Max Planck Society;

External Resource
There are no locators available
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)
公開されているフルテキストはありません
付随資料 (公開)
There is no public supplementary material available
引用

Djuranovic, S., Hartmann, M., Habeck, M., Ursinus, A., Zwickl, P., Martin, J., Lupas, A., & Zeth, K. (2009). Structure and Activity of the N-Terminal Substrate Recognition Domains in Proteasomal ATPases. Molecular Cell, 34(5), 580-590. doi:10.1016/j.molcel.2009.04.030.


引用: https://hdl.handle.net/21.11116/0000-000A-EDD8-8
要旨
The proteasome forms the core of the protein quality control system in archaea and eukaryotes and also occurs in one bacterial lineage, the Actinobacteria. Access to its proteolytic compartment is controlled by AAA ATPases, whose N-terminal domains (N domains) are thought to mediate substrate recognition. The N domains of an archaeal proteasomal ATPase, Archaeoglobus fulgidus PAN, and of its actinobacterial homolog, Rhodococcus erythropolis ARC, form hexameric rings, whose subunits consist of an N-terminal coiled coil and a C-terminal OB domain. In ARC-N, the OB domains are duplicated and form separate rings. PAN-N and ARC-N can act as chaperones, preventing the aggregation of heterologous proteins in vitro, and this activity is preserved in various chimeras, even when these include coiled coils and OB domains from unrelated proteins. The structures suggest a molecular mechanism for substrate processing based on concerted radial motions of the coiled coils relative to the OB rings.