English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

New protein families with hendecad coiled coils in the proteome of life

MPS-Authors
/persons/resource/persons276832

Martinez-Goikoetxea,  M       
Department Protein Evolution, Max Planck Institute for Biology Tübingen, Max Planck Society;

/persons/resource/persons78342

Lupas,  AN       
Department Protein Evolution, Max Planck Institute for Biology Tübingen, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Martinez-Goikoetxea, M., & Lupas, A. (2023). New protein families with hendecad coiled coils in the proteome of life. Journal of Structural Biology, 215(3): 108007. doi:10.1016/j.jsb.2023.108007.


Cite as: https://hdl.handle.net/21.11116/0000-000D-8328-2
Abstract
Coiled coils are a widespread and well understood protein fold. Their short and simple repeats underpin considerable structural and functional diversity. The vast majority of coiled coils consist of 7-residue (heptad) sequence repeats, but in essence most combinations of 3- and 4-residue segments, each starting with a residue of the hydrophobic core, are compatible with coiled-coil structure. The most frequent among these other repeat patterns are 11-residue (hendecad, 3+4+4) repeats. Hendecads are frequently found in low copy number, interspersed between heptads, but some proteins consist largely or entirely of hendecad repeats. Here we describe the first large-scale survey of these proteins in the proteome of life. For this, we scanned the protein sequence database for sequences with 11-residue periodicity that lacked β-strand prediction. We then clustered these by pairwise similarity to construct a map of potential hendecad coiled-coil families. Here we discuss these according to their structural properties, their potential cellular roles, and the evolutionary mechanisms shaping their diversity. We note in particular the continuous amplification of hendecads, both within existing proteins and de novo from previously non-coding sequence, as a powerful mechanism in the genesis of new coiled-coil forms.