Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Preprint

Applicability of AlphaFold2 in the modelling of coiled-coil domains

MPG-Autoren
/persons/resource/persons276832

Martinez-Goikoetxea,  M       
Department Protein Evolution, Max Planck Institute for Biology Tübingen, Max Planck Society;

/persons/resource/persons275270

Dunin-Horkawicz,  S       
Department Protein Evolution, Max Planck Institute for Biology Tübingen, Max Planck Society;
Structural Bioinformatics Group, Department Protein Evolution, Max Planck Institute for Biology Tübingen, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Madaj, R., Martinez-Goikoetxea, M., Kaminski, K., Ludwiczak, J., & Dunin-Horkawicz, S. (submitted). Applicability of AlphaFold2 in the modelling of coiled-coil domains.


Zitierlink: https://hdl.handle.net/21.11116/0000-000E-A710-3
Zusammenfassung
Coiled coils are a common protein structural motif involved in cellular functions ranging from mediating protein-protein interactions to facilitating processes such as signal transduction or regulation of gene expression. They are formed by two or more alpha helices that wind around a central axis to form a buried hydrophobic core. Various forms of coiled-coil bundles have been reported, each characterized by the number, orientation, and degree of winding of the constituent helices. This variability is underpinned by short sequence repeats that form coiled coils and whose properties determine both their overall topology and the local geometry of the hydrophobic core. The strikingly repetitive sequence has enabled the development of accurate sequence-based coiled-coil prediction methods; however, the modelling of coiled-coil domains remains a challenging task. In this work, we present the outstanding accuracy of AlphaFold2 in modeling coiled-coil domains, both in modeling local geometry and in predicting global topological properties. Furthermore, we show that the prediction of the oligomeric state of coiled-coil bundles can be improved by using the internal representations of AlphaFold2, with a performance better than any previous state-of-the-art method (code available at https://github.com/labstructbioinf/dc2_oligo).