English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

A short history of RubisCO: the rise and fall (?) of Nature's predominant CO2 fixing enzyme

MPS-Authors
/persons/resource/persons254247

Erb,  Tobias J.
Understanding and Building Metabolism, Department of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Max Planck Society;

/persons/resource/persons254859

Zarzycki,  Jan
Understanding and Building Metabolism, Department of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Erb, T. J., & Zarzycki, J. (2018). A short history of RubisCO: the rise and fall (?) of Nature's predominant CO2 fixing enzyme. CURRENT OPINION IN BIOTECHNOLOGY, 49, 100-107. doi:10.1016/j.copbio.2017.07.017.


Cite as: https://hdl.handle.net/21.11116/0000-0004-45CA-B
Abstract
Ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) is arguably one of the most abundant proteins in the biosphere and a key enzyme in the global carbon cycle. Although RubisCO has been intensively studied, its evolutionary origins and rise as Nature's most dominant carbon dioxide (CO2)-fixing enzyme still remain in the dark. In this review we will bring together biochemical, structural, physiological, microbiological, as well as phylogenetic data to speculate on the evolutionary roots of the CO2-fixation reaction of RubisCO, the emergence of RubisCO-based autotrophic CO2-fixation in the context of the Calvin-Benson-Bassham cycle, and the further evolution of RubisCO into the 'RubisCOsome', a complex of various proteins assembling and interacting with the enzyme to improve its operational capacity (functionality) under different biological and environmental conditions.