English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

A transition from strong right-handed to canonical left-handed supercoiling in a conserved coiled-coil segment of trimeric autotransporter adhesins

MPS-Authors
/persons/resource/persons271242

Hernandez Alvarez,  B
Department Protein Evolution, Max Planck Institute for Developmental Biology, Max Planck Society;
Conservation of Protein Structure and Function Group, Department Protein Evolution, Max Planck Institute for Developmental Biology, Max Planck Society;

/persons/resource/persons277268

Gruber,  M
Department Protein Evolution, Max Planck Institute for Developmental Biology, Max Planck Society;

/persons/resource/persons272916

Ursinus,  A
Department Protein Evolution, Max Planck Institute for Developmental Biology, Max Planck Society;

/persons/resource/persons275270

Dunin-Horkawicz,  S
Department Protein Evolution, Max Planck Institute for Developmental Biology, Max Planck Society;

/persons/resource/persons78342

Lupas,  AN
Department Protein Evolution, Max Planck Institute for Developmental Biology, Max Planck Society;

/persons/resource/persons78923

Zeth,  K
Department Protein Evolution, Max Planck Institute for Developmental Biology, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Hernandez Alvarez, B., Gruber, M., Ursinus, A., Dunin-Horkawicz, S., Lupas, A., & Zeth, K. (2010). A transition from strong right-handed to canonical left-handed supercoiling in a conserved coiled-coil segment of trimeric autotransporter adhesins. Journal of Structural Biology, 170(2), 236-245. doi:10.1016/j.jsb.2010.02.009.


Cite as: https://hdl.handle.net/21.11116/0000-000A-E2A0-1
Abstract
Trimeric autotransporter adhesins (TAAs) represent an important class of pathogenicity factors in proteobacteria. Their defining feature is a conserved membrane anchor, which forms a 12-stranded beta-barrel through the outer membrane. The proteins are translocated through the pore of this barrel and, once export is complete, the pore is occluded by a three-stranded coiled coil with canonical heptad (7/2) sequence periodicity. In many TAAs this coiled coil is extended by a segment of varying length, which has pentadecad (15/4) periodicity. We used X-ray crystallography and biochemical methods to analyze the transition between these two periodicities in the coiled-coil stalk of the Yersinia adhesin YadA. Our results show how the strong right-handed supercoil of the 15/4-periodic part locally undergoes further over-winding to 19/5, before switching at a fairly constant rate over 14 residues to the canonical left-handed supercoil of the 7/2-periodic part. The transition region contains two YxD motifs, which are characteristic for right-handed coiled-coil segments of TAAs. This novel coiled-coil motif forms a defined network of inter- and intrahelical hydrogen bonds, thus serving as a structural determinant. Supercoil fluctuations have hitherto been described in coiled coils whose main sequence periodicity is disrupted locally by discontinuities. Here we present the first detailed analysis of two fundamentally different coiled-coil periodicities being accommodated in the same structure.