English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Bacterial histone HBb from Bdellovibrio bacteriovorus compacts DNA by bending

MPS-Authors
/persons/resource/persons287231

Hu,  Y
Conservation of Protein Structure and Function Group, Department Protein Evolution, Max Planck Institute for Biology Tübingen, Max Planck Society;
Department Protein Evolution, Max Planck Institute for Biology Tübingen, Max Planck Society;

/persons/resource/persons273356

Deiss,  S
Conservation of Protein Structure and Function Group, Department Protein Evolution, Max Planck Institute for Biology Tübingen, Max Planck Society;
Department Protein Evolution, Max Planck Institute for Biology Tübingen, Max Planck Society;

/persons/resource/persons284015

Escudeiro,  P
Protein Bioinformatics Group, Department Protein Evolution, Max Planck Institute for Biology Tübingen, Max Planck Society;
Department Protein Evolution, Max Planck Institute for Biology Tübingen, Max Planck Society;

/persons/resource/persons286337

Joiner,  JD       
Molecular Recognition and Catalysis Group, Department Protein Evolution, Max Planck Institute for Biology Tübingen, Max Planck Society;
Department Protein Evolution, Max Planck Institute for Biology Tübingen, Max Planck Society;

/persons/resource/persons271510

Hartmann,  MD       
Molecular Recognition and Catalysis Group, Department Protein Evolution, Max Planck Institute for Biology Tübingen, Max Planck Society;
Department Protein Evolution, Max Planck Institute for Biology Tübingen, Max Planck Society;

/persons/resource/persons78342

Lupas,  AN       
Department Protein Evolution, Max Planck Institute for Biology Tübingen, Max Planck Society;

/persons/resource/persons271242

Hernandez Alvarez,  B       
Conservation of Protein Structure and Function Group, Department Protein Evolution, Max Planck Institute for Biology Tübingen, Max Planck Society;
Department Protein Evolution, Max Planck Institute for Biology Tübingen, Max Planck Society;

/persons/resource/persons271574

Alva,  V       
Protein Bioinformatics Group, Department Protein Evolution, Max Planck Institute for Biology Tübingen, Max Planck Society;
Department Protein Evolution, Max Planck Institute for Biology Tübingen, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Hu, Y., Schwab, S., Deiss, S., Escudeiro, P., van Heesch, T., Joiner, J., et al. (2024). Bacterial histone HBb from Bdellovibrio bacteriovorus compacts DNA by bending. Nucleic Acids Research, Epub ahead: gkae485. doi:10.1093/nar/gkae485.


Cite as: https://hdl.handle.net/21.11116/0000-000D-BEB0-6
Abstract
Histones are essential for genome compaction and transcription regulation in eukaryotes, where they assemble into octamers to form the nucleosome core. In contrast, archaeal histones assemble into dimers that form hypernucleosomes upon DNA binding. Although histone homologs have been identified in bacteria recently, their DNA-binding characteristics remain largely unexplored. Our study reveals that the bacterial histone HBb (Bd0055) is indispensable for the survival of Bdellovibrio bacteriovorus, suggesting critical roles in DNA organization and gene regulation. By determining crystal structures of free and DNA-bound HBb, we unveil its distinctive dimeric assembly, diverging from those of eukaryotic and archaeal histones, while also elucidating how it binds and bends DNA through interaction interfaces reminiscent of eukaryotic and archaeal histones. Building on this, by employing various biophysical and biochemical approaches, we further substantiated the ability of HBb to bind and compact DNA by bending in a sequence-independent manner. Finally, using DNA affinity purification and sequencing, we reveal that HBb binds along the entire genomic DNA of B. bacteriovorus without sequence specificity. These distinct DNA-binding properties of bacterial histones, showcasing remarkable similarities yet significant differences from their archaeal and eukaryotic counterparts, highlight the diverse roles histones play in DNA organization across all domains of life.